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Abstract

Electronic trading of equities and other securities makes heavy use
of “arrival price” algorithms, that balance the market impact cost of
rapid execution against the volatility risk of slow execution. In the
standard formulation, mean-variance optimal trading strategies are
static: they do not modify the execution speed in response to price
motions observed during trading. We show that substantial improve-
ment is possible by using dynamic trading strategies, and that the
improvement is larger for large initial positions.

We develop a technique for computing optimal dynamic strategies
to any desired degree of precision. The asset price process is observed
on a discrete tree with a arbitrary number of levels. We introduce a
novel dynamic programming technique in which the control variables
are not only the shares traded at each time step, but also the maxi-
mum expected cost for the remainder of the program; the value func-
tion is the variance of the remaining program. The resulting adaptive
strategies are “aggressive-in-the-money”: they accelerate the execu-
tion when the price moves in the trader’s favor, spending parts of the
trading gains to reduce risk.
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1 Introduction

Algorithmic trading considers execution in the market of large transactions
within a fixed time period, optimizing some trade-off between risk and re-
ward. In arrival price algorithms, the execution benchmark is the pre-trade
price. The difference between the pre-trade and the post-trade book value
of the portfolio, including cash positions, is the implementation shortfall
[Perold, 1988]. For instance, the implementation shortfall of a sell program
is the initial value of the position minus the dollar amount captured. The
implementation shortfall is random, since it depends both on the execution
strategy, and on market movements experienced before the trade is complete.

In the simplest model, the expected value of the implementation short-
fall is entirely due to the market impact incurred by trading. (Anticipated
price drift is potentially important, but in this paper we want to concentrate
attention on the balance between risk and reward.) This expected cost is
minimized by trading as slowly as possible. Conversely, with determinisstic
market impact, the variance of the implementation shortfall is entirely due
to price volatility, and this variance is minimized by trading rapidly.

In a risk-reward framework, “efficient” strategies minimize risk for a spec-
ified maximum level of expected cost or conversely; the set of such strate-
gies is summarized in the “efficient frontier of optimal trading” [Almgren
and Chriss, 2000]. In contrast to more mathematically sophisticated utility
function formulations, the simple mean-variance approach has the practical
advantage that risk and reward are expressed as two real variables that are
easily understood and displayed on a two-dimensional picture.

However, using mean and variance in a time-dependent problem presents
some subtleties. We may distinguish three different optimization problems,
depending on what form of adaptivity we permit.

1. We may require that the number of shares to be sold at each time
be specified in advance. Huberman and Stanzl [2005] suggest that a
reasonable example of this is insider trading, where trades must be
announced in advance. This is the “static” problem of Almgren and
Chriss [2000] and of Section 2.3 below, and also the “precommittment”
consumption strategies of Strotz [1956].

2. We may require that a rule be fixed at the starting time, specifying
how the trade quantities will be determined at each future time as a
function of market properties observed at that time. The rule is chosen
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to optimize a mean-variance criterion evaluated at the initial time, and
may not be modified later. For example, Basak and Chabakauri [2010]
generalized the static strategies of Strotz [1956] by allowing investment
decisions to depend on an additional random variable that is observable
but not investable. In our case, the only random market property is
asset price, so the question is whether trade decisions are allowed to
depend on the realized price process.

3. We may allow the optimal strategy to be recalculated at each time, us-
ing a mean-variance criterion determined at that time for the remainder
of the program. Strotz [1956] calls this a “consistent planning” strat-
egy. The freedom to modify the strategy may reduce its effectiveness,
since it must be designed to be appealing to one’s own future self (the
“intertemporal tussle” of Strotz [1956]).

For example, consider the well-known problem of Black-Scholes option hedg-
ing. Problem 1 can be considered, but its solutions are absurdly far from
optimal; the optimal hedge depends essentially on the realized asset price.
The solution to problem 3 is the same as the solution to problem 2, exactly
because variance is completely eliminated.

For optimal trade execution, for mean-variance optimality with arithmetic
Brownian motion, Almgren and Chriss [2000] and Huberman and Stanzl
[2005] have shown that the solution to problem 3 is the same as 1. However,
by considering a simple rule consisting of a single trajectory modification
at one fixed intermediate time, Almgren and Lorenz [2007] showed that the
solutions to problem 2 can have better mean-variance properties than the
solutions to 3 or 1. This crucially depends on the condition that mean and
variance are to be measured at the initial time. These strategies are not
time-consistent: to obtain the benefit, you must deny your future self the
opportunity to modify the strategy based on his own preferences.

Whereas Almgren and Lorenz [2007] demonstrated the possibility of im-
provement by a very simple update strategy which was far from optimal, in
this paper we determine the full time-dependent optimal solutions.

Since the nature of the problems and of their solutions are different, it
is important to ask which formulation corresponds better to real industrial
practice. Indeed, problem 2 corresponds to how trading results are typically
reported in practice. Clients of agency trading desks are provided with a post-
trade report daily, weekly, or monthly depending on their trading activity.
This report shows sample average and standard deviation of execution price
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relative to the implementation shortfall benchmark, across all trades executed
for that client during the reporting period. Therefore the broker-dealer’s goal
is to design algorithms that optimize sample mean and variance at the per-
order level, so that the post-trade report will be as favorable as possible.
As discussed in Almgren and Lorenz [2007], this ex post measurement of
sample mean and variance across a population corresponds exactly to the
probabilistic notion of mean and variance for a single execution.

A problem related to the optimal execution of portfolio transactions is
that of mean-variance portfolio optimization in a multiperiod setting (Basak
and Chabakauri 2010, Bielecki, Jin, Pliska, and Zhou 2005, Li and Ng 2000,
Richardson 1989, Zhou and Li 2000), but the market impact terms signifi-
cantly complicate the problem. He and Mamaysky [2005] and Forsyth [2011]
address the optimal execution problem in a continuous-time setting with a
Hamilton-Jacobi-Bellman approach, the former optimizing expected utility,
and the latter the mean-variance criterion using a technique proposed by Li
and Ng [2000] and by Zhou and Li [2000].

We follow a different approach to determine optimal trading strategies
with respect to the specification of risk and reward at the initial time. We
give an efficient scheme to obtain fully optimal Markovian trading strategies
for the arrival price problem in a discrete time setting which can approximate
the continuous time problem arbitrarily closely and yields numerical solutions
by solving a series of convex constrained optimization problems.

The improvement through adaptivity is larger for large portfolios, ex-
pressed in terms of a preference-free nondimensional parameter that measures
the price impact of the trade relative to market volatility. For small portfo-
lios, optimal adaptive trade schedules coincide with optimal static schedules.

Almgren and Lorenz [2007] show that the improvement of a dynamic
portfolio strategy over a static portfolio is due to anti-correlation between
the portfolio return of each period and the expected portfolio return in the
remaining periods. After a fortunate price move the investor will try to
conserve his realized gains and put less capital at risk in the remainder. In
effect, spend any trading gains on market impact to reduce risk. That is, the
investor’s risk aversion changes in response to past performance, making him
more risk-averse after positive performance. A similar effect was reported
by Cvitanić, Lazrak, and Wang [2008] for the Sharpe ratio as a performance
measure. Our new optimal trade schedules are “aggressive-in-the-money”
(AIM) in the sense of Kissell and Malamut [2005]; a “passive-in-the-money”
(PIM) strategy would slow down following a fortunate price change. Also
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Basak and Chabakauri [2010] find that the precomitted strategy for the mean-
variance portfolio optimization problem decreases the risky investment in
good states.

One important reason for using a AIM or PIM strategy would be the
expectation of serial correlation in the price process: belief in momentum
would lead to a PIM strategy [Almgren and Lorenz, 2006], and see Bertsimas
and Lo [1998] for the effect of very short-term correlation. Our strategies arise
in a pure random walk model with no serial correlation, using pure classic
mean and variance.

Schied and Schöneborn [2009] have shown that AIM or PIM strategies can
arise from the structure of a utility function formulation. For functions with
increasing absolute risk aversion (IARA), optimal strategies are AIM; with
decreasing absolute risk aversion (DARA) optimal strategies are PIM. Only
for constant absolute risk aversion, such as an exponential utilitiy function,
are optimal strategies static. Our formulation is conceptually similar to a
CARA utility function and describes a different mechanism for adaptivity.

The remainder of this paper is organized as follows: In Section 2 we
present the market and trading model. In Section 2.2 we review the con-
cept of mean variance efficient strategies and the efficient frontier of trading,
including the optimal static trajectories of Almgren and Chriss [2000]. In Sec-
tion 3, we show how to construct fully optimal adaptive policies by means of
a dynamic programming principle for mean-variance optimization. In Sec-
tion 4 we present an approximation scheme for the dynamic program derived
in Section 3, for which we give numerical results in Section 5.

2 Trading Model

Let us start by reviewing the trading model of Almgren and Chriss [2000].
We confine ourselves to sell programs in a single security; the definitions and
results for a buy program are completely analogous.

2.1 Market dynamics

We hold a block of X shares of a stock that we want to completely sell
by time horizon T . We divide T into N intervals of length τ = T/N , and
define discrete times tk = kτ , k = 0, . . . , N . A trading strategy π is a list
of stock holdings (x0, x1, . . . , xN) where xk is the number of shares we plan



Lorenz/Almgren, Optimal Adaptive Execution January 23, 2011 6

to hold at time tk; we require x0 = X and xN = 0. Thus we shall sell
x0 − x1 shares between t0 and t1, x1 − x2 shares between times t1 and t2
and so on. The average rate of trading during the time interval tk−1 to tk is
vk = (xk−1 − xk)/τ .

For a “static” strategy, the trade list π = {xk}, or equivalently π = {vk},
is a list of constant numbers. For a “dynamic” strategy, π is a random process
adapted to the filtration of the price process as described below. We optimize
the strategy by determining the rule by which xk is computed at time tk−1.

The stock price follows an arithmetic random walk

Sk = Sk−1 + στ 1/2ξk − τg(vk) , k = 1, . . . , N. (1)

The ξk are i.i.d. random variables taking values in a set Ω and having E[ξk] =
0 and Var[ξk] = 1. For example, we could take Ω = R with each ξk standard
normal; a binomial tree model would set Ω = {±1}.

Let Fk be the σ-algebra generated by {ξ1, . . . , ξk}, for k = 0, . . . , N . For
k = 1, . . . , N , Fk−1 is the information available to the investor before he
makes trade decision xk, and hence xk must be Fk−1 measurable (x1 must
be a fixed number). The random variable xk is determined by a function
Ωk−1 → R. The specification of these functions constitutes the adaptive
trading strategy π, but we continue to concentrate attention on xk as a
random variable rather than its determining function.

The coefficient σ is the absolute volatility of the stock, so σ2τ is the vari-
ance of price change over a single time step, and the variance of price change
over the entire trading period is σ2T . The function g(v) represents the rate
at which permanent impact is incurred, as a function of the instantaneous
average rate of trading vk = (xk−1 − xk)/τ during the interval tk−1 to tk.

Temporary market impact is modeled by considering our realized trade
price to be less favorable than the “public” price Sk. The effective price per
share when selling xk−1 − xk during the interval tk−1 to tk is

S̃k = Sk−1 − h(vk) . (2)

Unlike permanent impact g(v), the temporary impact effect h(v) does not
affect the next market price Sk.

The total cost of trading, or implementation shortfall, for selling X shares
across N steps of length τ , using trading policy π = (x0, . . . , xN), is the
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difference between the initial market value and the final capture of the trade:

C(X,N, π) = X S0 −
N∑
k=1

(xk−1 − xk) S̃k

=
N∑
k=1

[
τ xk g(vk) + τ vk h(vk) − στ 1/2ξkxk

]
. (3)

C(X,N, π) is an FN -measurable random variable. Because of our assumption
of arithmetic Brownian motion, it is independent of the initial stock price
S0. Of course C depends on all market parameters as well as the strategy,
but we focus on X and N for use in the dynamic programming formulation.
When we vary N , we shall assume that the time step τ is held constant, so
the time horizon T = Nτ varies.

In general, g(v) may be any convex function, and h(v) may be any func-
tion so that v h(v) is convex. We focus on the linear case

g(v) = γ v, h(v) = η0 v.

Then, neglecting a constant term involving γ, (3) becomes

C(X,N, π) = τη
N∑
k=1

v 2
k − στ 1/2

N∑
k=1

ξkxk (4)

with η = η0 − 1
2
γτ . We assume that τ is small enough that η > 0.

Geometric Brownian motion is a more traditional model than arithmetic.
However, for the intraday time scales of interest to us, the difference is neg-
ligible, and the arithmetic process is much more convenient. In particular,
the expected size of future price changes, as absolute dollar quantities, does
not depend on past price changes or the starting price level.

We assume that volatility, as well as the dependence of permanent impact
and temporary impact on our trade decisions, are not only non-random and
known in advance but are constant. Predictable intraday seasonality can
largely be handled by interpreting time t as a “volume time” corresponding
to the market’s average rate of trading. Random variations in volatility and
liquidity are more difficult to model properly (Almgren 2009, Walia 2006).

As τ → 0, that is, as N → ∞ with T fixed, this discrete trading model
converges to a continuous-time process: the exogenous price process is a
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Brownian motion, the shares process is an adapted function x(t), and the
instantaneous trade rate is v(t) = −dx/dt. Hence, the scheme that we will
give in the rest of this paper to determine optimal strategies immediately
yields a continuous-time scheme as well. The same techniques would also
work with nonlinear cost functions, or with a drift term added to the price
dynamics, or for multi-asset baskets, though dynamic programming for a
multi-asset problem would require a very large state space.

2.2 Efficient frontier of optimal execution

For any trading strategy, the final cost C(X,N, π) is a random variable: not
only do the price motions ξk directly affect our trading gains or losses, but for
an adapted strategy the trade list π itself may be different on each realization.
An “optimal” strategy will determine some balance between minimizing the
expected cost and its variance.

Let

D(X,N) =

 (
π,C

) ∣∣∣∣∣∣∣
π = (x0, x1, . . . , xN) with x0 = X, xN = 0

x0 ≥ x1 ≥ · · · ≥ xN

C(X,N, π) ≤ C almost surely

 (5)

be the set of all adapted trading policies that sell X shares in N periods. An
agency broker may never buy shares as part of a sell order, so {xk} must be
nonincreasing in time. The trade schedule π must be adapted to the filtration
Fk of the stock price process Sk as described above.

The final cost C is a FN -measurable random variable giving an upper
bound for the actual trading cost associated with this strategy for each re-
alization of the stock price. Of course,

(
π,C(X,N, π)

)
∈ D(X,N) for any

π, and if (π,C) ∈ D(X,N) then (π,C + δC) ∈ D(X,N), where δC is any
FN -measurable random variable whose values are almost surely nonnegative.
We allow the cost bound to be specified separately because below we will in-
terpret it as one of the trader’s control parameters: we allow the trader to
deliberately add cost in certain scenarios if that improves his mean-variance
trade-off (Section 3.3). This possibility arises from the non-monotonicity of
the mean-variance criterion.

For given E ∈ R, let

A (X,N,E) =
{

(π,C) ∈ D(X,N)
∣∣∣ E

[
C
]
≤ E

}
(6)



Lorenz/Almgren, Optimal Adaptive Execution January 23, 2011 9

be the (possibly empty) subset of policies and associated cost bounds, whose
expected cost is at most E. Unless otherwise specified, all expectations and
variances are unconditional, thus evaluated at time t = 0.

In this paper, we concentrate on the mean-variance constrained optimiza-
tion problem

Vmin(E) = inf
{

Var
[
C
] ∣∣∣ (π,C) ∈ A (X,N,E)

}
. (7)

With arithmetic Brownian motion (1), the values Vmin(E) and the associated
strategies are independent of the initial stock price S0. The graph of Vmin(E)
is the efficient frontier of optimal trading strategies [Almgren and Chriss,
2000].

It is not obvious that the infimum in (7) is actually attained by any
trading strategy, for fully general problems and for any values of E other than
trivial ones. However, in practical applications, the price set Ω is a simple set
like {±1} or R, and each xk is specified by a function on Ωk−1, with a Hilbert
space structure inherited from the probability measure on Ω. Problem (7) is
a minimization in the Hilbert space of the collection of these functions. For
reasonable measures, the functionals E[C] and Var[C] are coercive on this
space. Furthermore, in Section 3.3 we show generally that the optimization
problem at each step is convex. Then a powerful set of standard techniques
[Kurdila and Zabarankin, 2005] are available to demonstrate the existence of
minimizers at each step and hence an overall minimzer. We shall therefore
proceed under the assumption that minimizing solutions do exist. We also do
not assume that minimizing strategies are necessarily unique, and therefore
we shall refer to “a” or “every” minimizer.

By varying E ∈ R we determine the family of all efficient strategies

E (X,N) =
{

(π,C) ∈ D(X,N)
∣∣∣ @ (π̃, C̃) ∈ D(X,N) such that

E
[
C̃
]
≤ E

[
C
]

and Var
[
C̃
]
< Var

[
C
] }

. (8)

The domain A (X,N,E) is empty if the target expected cost E is too
small. To determine the minimum possible expected cost, note that the last
term in (4) has strictly zero expected value. Minimizing the remaining term
E
[∑

v 2
k

]
gives the nonrandom linear strategy πlin with xk−1 − xk = X/N

for k = 1, . . . , N . In volume time, this is the popular VWAP profile. The
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expectation and variance of the cost of this strategy are

Elin(X,N) =
ηX2

T
, (9)

Vlin(X,N) =
1

3
σ2X2 T

(
1− 1

N

)(
1− 1

2N

)
. (10)

Conversely, a strategy having zero variance is the “instantaneous” one
that sells the entire position in the first time period: πinst with x1 = · · · =
xN = 0. This yields Vinst(X,N) = 0 and

Einst(X,N) =
ηX2

τ
= N Elin(X,N) . (11)

Thus we may summarize the behavior of (7) as

• For E < Elin, the set A (X,N,E) is empty and Vmin = +∞.

• For E ≥ Elin, the set A (X,N,E) contains at least the linear strategy,
with a finite variance. Hence Vmin exists since it is the infimum of
a nonempty set that is bounded below by zero. For E ≥ Einst, the
minimum possible value Vmin = 0 is attainable by the instantaneous
strategy. Our computational procedure below produces a sequence of
strategies whose variance approaches this infimum.

2.3 Static trajectories

An important special set of strategies is determined by restricting the mini-
mum to the subset of A (X,N,E) consisting of nonrandom or “static” strate-
gies. Then (7) becomes a simple numerical minimization

min
x1≤···≤xk−1

{
σ2τ

N∑
k=1

x2
k

∣∣∣∣∣ ητ
N∑
k=1

(xk−1 − xk)2 ≤ E

}
(12)

with x0 = X and xN = 0. The strategies are most easily computed by using
a Lagrange multiplier or risk aversion, that is, minimizing E[C] + λVar[C].
The result is

xj = X
sinh(κ(T − tj))

sinh(κT )
, j = 0, . . . , N , (13)
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in which the urgency parameter is κ ∼
√
λσ2/η + O(τ). The expected

cost and variance can be computed explicitly, and reduce to
(
Elin, Vlin

)
and(

Einst, Vinst

)
in the limits λ→ 0 and λ→∞ respectively.

The static execution strategy is independent of the portfolio size X except
for an overall factor, and the expected value and variance of total cost are
quadratic in portfolio size. For static strategies, these properties do not hold
for nonlinear cost models [Almgren, 2003]. Also, for dynamic strategies, these
properties no longer hold.

Almgren and Chriss [2000] as well as Huberman and Stanzl [2005] have
shown that dynamic adaptive solutions are the same as the static solutions,
if mean and variance are reevaluated at each intermediate time when the
new solution is computed. We emphasize that that formulation is a differ-
ent problem than the one we consider, which optimizes mean and variance
measured at the initial time.

3 Optimal Adaptive Strategies

As seen in the previous section, we can construct optimal static trading
strategies by solving a straightforward optimization problem. But Almgren
and Lorenz [2007] have demonstrated that adaptive strategies can improve
over static trajectories, even using only a very simple and restrictive type
of adaptivity: only a single update at an intermediate time T ∗ is allowed,
and static trade schedules are used before and after that “intervention” time.
We now develop an alternative procedure that lets us compute fully optimal
adaptive strategies.

3.1 Dynamic programming

It is alluring to use dynamic programming to determine optimal trading
strategies, since this technique works so well for objective functions of the
form E[u(Y )]. But dynamic programming for expected values relies on the
“smoothing property” E

[
E[u(Y ) |X ]

]
= E

[
u(Y )

]
. For the square of the ex-

pectation in the variance term Var[Y ] = E[Y 2]−E[Y ]2, there is no immediate
analog of this expression, and it is difficult to see how to design an iterative
solution procedure. However, with a suitable choice of the value function,
mean-variance optimization is indeed amenable to dynamic programming.
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For (π,C) ∈ D(X,N) (with N ≥ 2), π = (X, x1, . . . , xN−1, 0), denote

(π,C)ξ1 ∈ D(x1, N − 1) the “tail” of the trading strategy (π,C)

for the remaining N −1 trading periods conditional on the outcome ξ1 of the
first period. This tail strategy has the trade schedule πξ1 = (x1, . . . , xN−1, 0),
and the cost random variable Cξ1 . The cost C of the total strategy in terms
of its tail cost is

C = Cξ1 +
η

τ
(X − x1)

2 − στ 1/2ξ1x1 . (14)

An adaptive policy π may use the information ξ1 from time t1 onwards, hence
in general (π,C)ξ1 indeed depends on the realization of ξ1.

The key ingredient in dynamic programming is to write the time-dependent
optimization problem on N periods as the combination of a single-step op-
timization with an optimization on the remaining N − 1 periods. We must
carefully define the parameters of the (N − 1)-step problem so that it gives
the same solution as the “tail” of the N -step problem.

In Almgren and Chriss [2000], the risk-aversion parameter λ is constant in
time and is constant across realizations of the price process ξ1 ∈ Ω. For the
expected utility function, Schied and Schöneborn [2009] hold constant the
analogous parameter α. For our mean-variance formulation, the following
Lemma asserts that the “tail” of any initially optimal strategy across N
steps is again an optimal strategy across N − 1 steps, if it is defined to be
the minimum-variance solution for an appropriate cost limit. This cost limit
is taken to be the expected value of the remainder of the initial strategy, and
will be different in each realization.

Lemma 1. For N ≥ 2, let (π,C) ∈ E (X,N) be an efficient execution policy
π = (X, x1, . . . , xN−1, 0) for (7). Then (π,C)ξ1 ∈ E (x1, N − 1) for almost all
ξ1 ∈ Ω, i.e. B = { ξ1 ∈ Ω | (π,C)ξ1 /∈ E (x1, N − 1) } has probability zero.

Proof. For each ξ1 ∈ B (if B is empty the result is immediate), the tail-
strategy (π,C)ξ1 is not efficient, hence there exists (π∗ξ1 , C

∗
ξ1

) ∈ D
(
x1, N − 1

)
such that E

[
C
∗
ξ1

]
= E

[
Cξ1

]
and Var

[
C
∗
ξ1

]
< Var

[
Cξ1

]
.

Define (π̃, C̃) ∈ D(X,N) by replacing the policy for t1 to tN in (π,C) by
(π∗ξ1 , C

∗
ξ1

) for all ξ1 ∈ B (and identical to π for all other outcomes Ω \ B of
ξ1). Then by construction

C̃ ≥ C(X,N, π̃) (15)
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and hence (π̃, C̃) ∈ D(X,N). Also by construction, we have E
[
C̃
]

= E
[
C
]
,

and conditional on ξ1 ∈ B, Var
[
C̃
∣∣ ξ1 ] < Var

[
C
∣∣ ξ1 ]. If B has positive

probability then E
[
Var[ C̃ | ξ1 ∈ B ]

]
< E

[
Var[C | ξ1 ∈ B ]

]
contradicting

(π,C) ∈ E (X,N).

For use in the dynamic programming construction, we extend the defini-
tion (7) for 1 ≤ k ≤ N , for x ≥ 0 and for fixed τ as

Jk(x, c) = inf
{

Var
[
C
] ∣∣∣ (π,C) ∈ A (x, k, c)

}
. (16)

If the cost limit c is below the cost Elin(x, k) = ηx2/kτ (9) of the linear
strategy, then no admissible solution exists and we set Jk = ∞. If c =
Elin(x, k), then the linear strategy gives the minimum variance (10). If the
cost limit is above Einst(x) = ηx2/τ (11), then instantaneous liquidation is
admissible with variance zero and we have Jk = 0. Thus

Jk(x, c) =


∞, c < ηx2/kτ

Vlin(x, k), c = ηx2/kτ

non-increasing in c, ηx2/kτ ≤ c ≤ ηx2/τ

0, c ≥ ηx2/τ .

(17)

In particular, for k = 1, Einst = Elin and so (for x ≥ 0)

J1(x, c) =

{
∞, c < ηx2/τ

0, c ≥ ηx2/τ .
(18)

The solution to (7) is Vlin(E) = JN(X,E).
By definitions (5,6,16), the value function Jk(x, c) and the set E (x, k) are

related by

(π∗, C
∗
) = argmin

(π,C)∈A (x,k,c)

Var
[
C
]

=⇒ (π∗, C
∗
) ∈ E (x, k) (19)

and
(π,C) ∈ E (x, k) =⇒ Var

[
C
]

= Jk(x,E
[
C
]
) . (20)

In view of the known static solutions, and by inspection of the expres-
sions (17) and (18), it is natural to conjecture that the value function and
the cost limit should be proportional to the square of the number of shares:
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Jk(x, c) = x2fk(c/x
2). In fact for dynamic strategies this is not true, even

for linear impact functions, except in the limit of small portfolio size (in a
suitable nondimensional sense made clear in Sections 3.2 and 3.4 below).

In the spirit of dynamic programming, we use the efficient frontier for
trading over k−1 periods, plus an optimal one-period strategy, to determine
the efficient frontier for trading over k periods. The key is to introduce an
additional control parameter in addition to the number of shares we trade in
the next period. This extra parameter is the expected cost limit for the re-
maining periods, which we denote by z; it is a real-valued integrable function
z ∈ L1(Ω; R) of the price change ξ ∈ Ω on that step.

Theorem 1. Let the stock price change in the next trading period be στ 1/2ξ
with ξ ∈ Ω the random return. Define

Gk(x, c) =
{(
y, z
)
∈ R×L1(Ω; R)

∣∣∣E[z(ξ)]+
η

τ
(x−y)2 ≤ c, 0 ≤ y ≤ x

}
. (21)

Then for k ≥ 2,

Jk(x, c) = min
(y,z)∈Gk(x,c)

(
Var
[
z(ξ)− στ 1/2ξy

]
+ E

[
Jk−1

(
y, z(ξ)

)] )
. (22)

Proof. Let ξ be the random price innovation in the first of the remaining k
trading periods. For given x ≥ 0 and Elin(x, k) ≤ c, let

(π∗, C
∗
) = argmin

(π,C)∈A (x,k,c)

Var
[
C
]
,

That is, π∗ is an optimal strategy to sell x shares in k time periods of length
τ with expected cost at most c. By (19), we have (π∗, C

∗
) ∈ E (X,N), and

by the definition (16) of Jk we have Jk(x, c) = Var
[
C
∗]

. Let y be the number
of shares held by π∗ after the first trading period, so π∗ = (x, y, . . . , 0).

The strategy π∗ may be understood as consisting of two parts: First, the
number of shares to be sold in the first period, x− y. This is a deterministic
variable, and may not depend on the next period price change ξ. Second,
the strategy for the remaining k− 1 periods. When the trader proceeds with
this (k − 1)-period strategy, the outcome of ξ is known, and the strategy
may depend on it. Conditional on ξ, let (π∗, C

∗
)ξ be the (k − 1)-period

tail-strategy.
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By Lemma 1, (π∗, C
∗
)ξ ∈ E (y, k − 1) for almost all realizations ξ ∈ Ω.

Thus, there exists z ∈ L1(Ω; R) such that using (20) we have for each ξ

E
[
C
∗
ξ

]
= z(ξ)

Var
[
C
∗
ξ

]
= Jk−1

(
y, z(ξ)

)
.

Since (π∗, C
∗
)ξ ∈ E (y, k − 1), we must have

z(ξ) ≥ Elin(y, k − 1) (23)

(the minimal expected cost is achieved by the linear profile πlin). With (14),
we conclude

E
[
C
∗ | ξ
]

= z(ξ) +
η

τ
(x− y)2 − στ 1/2ξy ,

Var
[
C
∗ | ξ
]

= Jk−1(y, z(ξ)) ,

and by the law of total expectation and total variance

E
[
C
∗
]

= E[z(ξ)] +
η

τ
(x− y)2 ,

Var
[
C
∗
]

= Var
[
z(ξ)− στ 1/2ξy

]
+ E

[
Jk−1

(
y, z(ξ)

)]
.

The pair (π∗, C
∗
) is an optimal solution to

min
(π,C)∈A (x,k,c)

Var
[
C
]
,

and so indeed (z(ξ), y) must be such that they are an optimal solution to

min
(z,y)

Var
[
z(ξ)− στ 1/2ξy

]
+ E

[
Jk−1

(
y, z(ξ)

)]
s.t. E[z(ξ)] +

η

τ
(x− y)2 ≤ c

0 ≤ y ≤ x (24)

Elin(y, k − 1) ≤ z(ξ) . (25)

The constraint (24) comes from our requirement that (π∗, C
∗
) must be a pure

sell-program. Since A (x, k, c) = ∅ for c < Elin(x, k) in (16), Jk−1(y, z(ξ)) =
∞ for z(ξ) < Elin(y, k − 1) and thus the constraint (25) never becomes
binding. Thus, the result (21,22) follows.
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Thus an optimal strategy (π∗, C
∗
) for k periods is defined by

(
y, z(ξ)

)
:

the number of shares x−y to sell in the first period, and the (k−1)-period tail

strategy specified by E
[
C
∗
ξ

]
= z(ξ) (that is, we commit ourselves that if we

see ξ in the first period, then we sell the remaining y shares using the mean-
variance optimal strategy with expected cost z(ξ) and variance Jk−1

(
y, z(ξ)

)
.

The expectation and variance of (π∗, C
∗
) are then given by

E
[
C
∗
]

= E[z(ξ)] +
η

τ
(x− y)2 , (26)

Var
[
C
∗
]

= Var
[
z(ξ)− στ 1/2ξy

]
+ E

[
Jk−1

(
y, z(ξ)

)]
. (27)

As noted in (23), not all z(ξ) are possible, since the minimal possible expected

cost of the tail strategy E
[
C
∗
ξ

]
is the expected cost of a linear profile.

In terms of (π,C), we have the following recursion for any optimal strat-
egy: For given (x, k, c), let (π∗k(x, c), C

∗
k(x, c)) ∈ A (x, k, c) be an optimal

strategy for (16), and let (y, z(ξ)) be an optimal one-step control in (22).
Then we have (for c ≥ ηx2/(kτ))

π∗k(x, c) =
(
y, π∗k−1(y, z(ξ))

)
C
∗
k(x, c) = C

∗
k−1(y, z(ξ)) +

η

τ
(x− y)2 − στ 1/2ξy , (28)

for k ≥ 2, and π∗1(x, c) = x and C
∗
1(x, c) = max{ηx2/τ, c}.

The dynamic program (18, 21, 22) indeed allows for C > C(X,N, π)
as stated in the definition (5). Recall that C and C(X,N, π) are random
variables that give a cost for each realization of the stock price process. Thus,
C > C(X,N, π) in (5) means that the trader can incur extra costs (by giving
away money) in some realizations of the stock price, if that improves his
mean-variance tradeoff. In terms of the dynamic program (18, 21, 22) this is
essentially accomplished by the trader’s choice of the last period tail strategy:
the trader has a certain number x of shares left to sell with actual cost of
ηx2/τ ; there is no decision variable in reality. However, in the specification
of the dynamic program (18, 21, 22), which is in line with the definition (7)
of E , the trader additionally specifies C ≥ ηx2τ ; the difference C − ηx2/τ is
the money that the trader is giving away.
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3.2 Nondimensionalization

The optimization problem (7) (respectively the one-step optimization prob-
lem (21, 22)) depends on five dimensional constants: the initial shares X,
the total time T (or the time step τ in conjunction with the number of steps
N), the absolute volatility σ and the impact coefficient η. To simplify the
structure of the problem, it is convenient to define scaled variables.

We measure shares x relative to the initial position X. We measure
impact cost c and its limit z relative to the total dollar cost that would be
incurred by liquidating X shares in time T using the linear strategy; the
per-share cost of this strategy is ηv = ηX/T so the total cost is ηX2/T . We
measure variance Jk relative to the variance (in squared dollars) of holding
X shares across time T with absolute volatility σ. The standard deviation
of the price per share is σ

√
T , so the standard deviation of dollar value is

σ
√
TX and the variance scale is σ2TX2.
We denote nondimensional values by a caret ,̂ so we write

x = Xx̂, c =
ηX2

T
ĉ, z =

ηX2

T
ẑ and Jk(x, c) = σ2TX2Ĵk

(
x

X
,

c

ηX2/T

)
.

Then X̂ = x̂0 = 1, so the trading strategy is π̂ = (1, x̂1, . . . , x̂N−1, 0).
The one-period value function is

Ĵ1(x̂, ĉ) =

{
∞, ĉ < Nx̂2

0, ĉ ≥ Nx̂2
(29)

and in Theorem 1 we have the scaled set of admissible controls

Ĝk(x̂, ĉ) =
{(
ŷ, ẑ
)
∈ R×L1(Ω; R)

∣∣∣E[ẑ(ξ)]+N(x̂−ŷ)2 ≤ ĉ, 0 ≤ ŷ ≤ x̂
}

(30)

and the dynamic programming step

Ĵk(x̂, ĉ) = min
(ŷ,ẑ)∈Ĝk(x̂,ĉ)

(
Var
[
µẑ(ξ)−N−1/2ξŷ

]
+ E

[
Ĵk−1

(
ŷ, ẑ(ξ)

)] )
. (31)

The nondimensional “market power” parameter

µ =
ηX

σT 3/2
=

ηX/T

σ
√
T

(32)

was identified by Almgren and Lorenz [2007] as a preference-free measure
of portfolio size. The numerator is the per-share price impact that would



Lorenz/Almgren, Optimal Adaptive Execution January 23, 2011 18

be caused by liquidating the portfolio linearly across the available time; the
denominator is the amount that the price would move on its own due to
volatility in the same time. As noted by Almgren and Lorenz [2007], for
realistic trade sizes µ will be substantially smaller than one.

The nondimensional version (29,30,31) of the optimization problem now
depends only on two nondimensional parameters: the time discretization pa-
rameter N and the new market power parameter µ. Especially for numerical
treatment, this reduction is very useful. From now on, we shall drop the
nondimensionalization mark ,̂ assuming that all variables have been nondi-
mensionalized.

3.3 Convexity

We now show that the optimization problem at each step is convex, and that
the value function Jk is a convex function of its two arguments.

We need the following lemma which is proved by an easy modification of
the argument in Boyd and Vandenberghe [2004, sect. 3.2.5].

Lemma 2. Let f(v) and h(u, v) be real-valued convex functions on vector
spaces V and U × V respectively, possibly taking the value +∞. Then g :
U 7→ R defined by

g(u) = inf
v∈V

{
f(v)

∣∣ h(u, v) ≤ 0
}

is convex.

Now we are ready to prove the convexity of Jk(x, c) and the dynamic
programming step.

Theorem 2. The optimization problem (30,31) is convex. The value func-
tion Jk(x, c) is convex for k ≥ 1.

Proof. We proceed by induction. Clearly, J1(x, c) in (29) is convex, since it
is finite on the convex domain {(x, c) | c ≥ Nx2} ⊆ R2.

The optimization problem (30,31) is of the form described in Lemma 2,
with the identifications u = (x, c) and v = (y, z), and h(u, v), f(v) given by
the functions appearing on the right side of (30) and (31) respectively. Thus
we need only show that these functions are convex.

For each k, the constraint function in (30) is convex in (x, c, y, z), since
the expectation operator is linear and the quadratic term is convex. In (31),
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the second term in the objective function is convex in (y, z), since Jk−1 is
assumed convex and expectation is linear.

The first term in (31) may be written Var[w(ξ)] where w(ξ) depends
linearly on y and z(ξ). And it is easy to see that Var[w] is convex in w.
(Indeed, this is certainly true for random variables w having E[w] = 0 since
then Var[w] =

∫
w2. For general w, one can write w(ξ) = w + u(ξ) where

w is constant and u(ξ) has mean zero; then Var[w] =
∫
u2 and convexity

follows.) The result follows.

Now let us return to the definitions (5,6,7), especially the constraint
“C(X,N, π) ≤ C” in (5). This effectively allows the trader to destroy money:
he may report a cost that is higher than the costs actually incurred by the
trade strategy. This is counterintuitive, but the trader may want to make
use of it due to a rather undesirable property of the mean-variance criterion:
A mean-variance optimizer can reduce his variance by making positive out-
comes less so. Of course this also reduces his mean benefit, but depending
on the parameters the tradeoff may be advantageous. As it is well-known,
mean-variance comparison does not necessarily respect stochastic dominance.

If we want to bar the trader from making use of this peculiarity, we
replace (5) by

D ′(X,N) =

 (
π,C

) ∣∣∣∣∣∣∣
π = (x0, x1, . . . , xN) with x0 = X, xN = 0

x0 ≥ x1 ≥ · · · ≥ xN

C(X,N, π) = C


(33)

Now the random variable C gives the exact actual cost of the trade schedule
π at all times. We change the definitions (6,7) of A and E accordingly,
replacing D by D ′, and denote these new sets A ′ and E ′. We define

J ′k(x, c) = min
(π,C)∈A ′(x,k,c)

Var
[
C
]
. (34)

With these definitions, D ′(X, 1) is the single-element set D ′(X, 1) =
{(πinst, Einst(X))} where πinst = (X, 0) is the immediate liquidation of X
shares and Einst(X) its cost.

It can be shown that Lemma 1 also holds for E ′.

Lemma 3. For N ≥ 2, let (π,C) ∈ E ′(X,N) with π = (X, x1, . . . , xN−1, 0).
Then B = { a ∈ Ω | (π,C)ξ1=a /∈ E ′(x1, N − 1) } has probability zero.
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The proof follows the proof of Lemma 3 word by word, with D and E
replaced by D ′ and E ′, respectively; only (15) changes to C̃ = C(X,N, π̃),
which indeed implies (π̃, C̃) ∈ D ′(X,N) accordingly.

Using Lemma 3, we can then argue along the lines of the proof of Theo-
rem 1 to obtain the (nondimensionalized) dynamic program

G ′k(x, c) =

 (y, z) ∈ R× L1(Ω; R)

∣∣∣∣∣∣∣
E[z] +N(x− y)2 ≤ c

z ≤ Ny2 a.e.

0 ≤ y ≤ x

 (35)

and

J ′k(x, c) = min
(y,z)∈Gk(x,c)

(
Var
[
µz −N−1/2ξy

]
+ E

[
Jk−1

(
y, z
)] )

, (36)

with J ′1(x, c) = J1(x, c) unchanged. The additional constraint “z(ξ) ≤ Ny2

a.e.” in (35) comes from the fact that z(ξ) specifies the (k − 1)-period tail
strategy (π∗, C

∗
)ξ by means of E

[
C
∗]

= z(ξ) and not all z(ξ) correspond to

a valid (π∗, C
∗
)ξ: the maximal expected cost of a (k− 1)-period tail strategy

is the cost of immediate liquidation ηy2/τ (or Ny2 in nondimensionalized
variables). In Theorem 1, this upper bound does not apply because by means
of (πinst, c) ∈ E (y, k − 1) for all c ≥ Einst = Ny2 the trader may give away
the extra cash.

Obviously, we have J ′k(x, c) ≥ Jk(x, c) for all k ≥ 1. Contrary to (30,31),
the optimization problem (35,36) is not a convex optimization problem be-
cause the additional constraint breaks the convexity of the set G ′k(x, c) and
Lemma 2 is not applicable.

In the following, we shall continue to work with the value function Jk(x, c)
as defined in Section 3.1.

3.4 Small portfolios

Almgren and Lorenz [2007] observed that for small portfolios the optimal
adaptive and optimal static efficient frontier coincide. We now prove that this
indeed holds also for general strategies. We denote by J0

k the value function
when µ = 0. Note that this case is perfectly natural in the nondimensional
form (30,31). But in the original dimensional form, from the definition (32),
this requires η → 0, X → 0, σ →∞, or T →∞, all of which pose conceptual
problems for the model. We are not able to prove rigorously that the solution
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of the problem for µ = 0 is the same as the limit of the solutions for positive
µ, but we conjecture that this is true.

Theorem 3. For µ = 0, the optimal policy of (30,31) is path-independent
(static) and the efficient frontier coincides with the static efficient frontier.

Proof. For µ = 0, (31) becomes

J0
k (x, c) = min

(y,z)∈Gk(x,c)

(
N−1y2 + E

[
J0
k−1

(
y, z(ξ)

)] )
. (37)

Inductively, we now show that for k ≥ 1 (defining xk = 0 to shorten notation)

J0
k (x, c) = min

x1≥···≥xk−1

{
1

N

k−1∑
j=1

x2
j

∣∣∣∣∣ (x− x1)
2 +

k∑
j=2

(xj−1 − xj)2 ≤ c

N

}
(38)

for c ≥ Nx2/k, and J0
k (x, c) =∞ otherwise. For k = 1, (38) reduces to

J0
1 (x, c) = 0 for c ≥ Nx2, and J0

1 (x, c) =∞ for c < Nx2 ,

and by definition (29) indeed J0
1 (x, c) = J1(x, c). For k ≥ 2, suppose that (38)

holds for k− 1. J0
k−1(x, c) is convex by Lemma 2. Thus, for any nonconstant

z(ξ), Jensen’s inequality implies J0
k−1

(
y,E[z]

)
≤ E

[
J0
k−1(y, z)

]
. i.e. there

exists a constant nonadaptive optimal control z(ξ) ≡ z. Thus, (37) becomes

J0
k (x, c) = min

y,z

{
N−1y2 + J0

k−1

(
y, z
)) ∣∣∣ z +N(x− y)2 ≤ c

}
.

After undoing the nondimensionalization, for k = N the optimization prob-
lem (38) is exactly problem (12) for the static trajectory. Hence, for µ = 0 the
adaptive efficient frontier does coincide with the static efficient frontier.

The theorem also holds for the variant (35, 36), where we restrict the
trader from giving away money. The reason is that for c ≥ Ny2, J0

k−1(y, c) =
0 since then x1 = · · · = xk−1 = 0 in (38) is admissible. Hence, the constraint
z ≤ Ny2 in (35, 37) will in fact never become binding.

For µ > 0, improvements over static strategies come from introducing
an anticorrelation between the two terms inside the variance in (31). This
reduces the overall variance, which we can trade for a reduction in expected
cost. Thus, following a positive investment return, we decrease our cost limit
for the remaining part of the program.
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4 Approximation of Optimal Control

The dynamic programming principle presented in Section 3 gives a method
to obtain fully optimal mean-variance strategies for (7). However, the opti-
mization problem (30,31) that we have to solve in each of the N recursive
steps is generally very hard, since it requires determining an optimal control
function z : Ω → R and Ω may be of infinite cardinality (e.g. Ω = R and
ξi ∼ N (0, 1)). In some situations, for instance for the classical Markowitz
portfolio problem in a multiperiod setting, a closed-form analytical solution
may be obtained [Lorenz, 2008, chap. 5]. There, this is due to a anti-
correlation argument; the optimal control function z : Ω → R is perfectly
anti-correlated to portfolio return in the current period. Unfortunately, this
argument cannot be used for (21,22) because of the additional constraint of
the type z ≥ Elin(x, k, τ); since the stock price change ξ may take arbitrarily
large positive and negative values, a lower bounded z can never be perfectly
correlated to ξ. Nonetheless, we will see in Theorem 4 below that z is indeed
correlated to ξ, yet not perfectly.

In this section, we show how approximate solutions can be obtained,
which converge to the full optimal solution as N →∞.

4.1 Step-function approximation

For simplicity, we assume Ω = R. Suppose we restrict the space of admissible
controls z to the space of step functions rather than all measurable functions.
More precisely, we partition the real line into n intervals I1, . . . , In with

I1 = (−∞, a1), I2 = [a1, a2), . . . , In−1 = [an−1, an), In = [an,∞) (39)

for a1 < · · · < an. For given (z1, . . . , zn) ∈ Rn we define the step function
z : R → R by z(ξ) = zj for ξ ∈ Ij. For large n, this approaches a
continuous dependence z(ξ). Let

pi = P[ξ ∈ Ii] , Ei = E[ξ | ξ ∈ Ii] and Vi = Var[ξ | ξ ∈ Ii] .

Let  = (ξ) be the indicator random variable  ∈ {1, . . . , n} such that  = j
if and only if ξ ∈ Ij.

Straightforward calculation yields

Var

[
µz −

ξy√
N

]
=

n∑
i=1

pi

(
µzi −

Eiy√
N
− µ

n∑
j=1

pjzj

)2

+
y2

N

n∑
i=1

piVi .
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Defining z̄ =
∑n

i=1 pizi and

E(y, z) = N
(
x− y

)2
+ z̄ , (40)

V (y, z) =
n∑
i=1

pi

{(
µ(zi − z̄)− Eiy√

N

)2

+
y2Vi
N

+ J̃k−1(y, zi)
}

(41)

the optimization problem (30,31) reads

J̃k(x, c) = min
(y,z1,...,zn)∈Rn+1

V (y, z)

∣∣∣∣∣∣∣
E(y, z) ≤ c (C1)

Ny2/(k − 1) ≤ zi ∀i (C2)

0 ≤ y ≤ x (C3)

 (42)

in dom Jk = {(x, c) | x ≥ 0, c ≥ Nx2/k}, with J̃1(x, c) = J1(x, c) in (29).
Thus, we have to solve an optimization problem with n + 1 variables

in each step. Since E(y, z) and V (y, z) are convex in (y, z), as the general
dynamic program (31, 30) the approximate problem (42) constitutes a convex
optimization problem as well. Hence, by Lemma 2 all approximate value
functions J̃k(x, z) are convex functions in (x, z).

The corresponding approximation of (35, 36) for J ′(x, c) is

J̃ ′k(x, c) = min
(y,z1,...,zn)∈Rn+1

V (y, z)

∣∣∣∣∣∣∣∣∣
E(y, z) ≤ c (C1)

Ny2/(k − 1) ≤ zi ∀i (C2)

0 ≤ y ≤ x (C3)

Ny2 ≥ zi, i = 1 . . . n (C4)

 , (43)

with the additional constraint (C4). J̃ ′1(x, c) = J1(x, c) remains unchanged.

4.2 Aggressiveness in-the-money (AIM)

In this section we shall prove that for step-function controls z as described
in Section 4.1 any optimal control z(ξ) is positively correlated to the stock
price return. In terms of the controls z1, . . . , zn this means that z1 ≤ · · · ≤ zn
since by definition (39) of the intervals Ij for i < j the control zi corresponds
to price changes ξ that are smaller than those for zj.

The interpretation is that if the stock price goes up, we sell faster (higher
expected cost zi for the remainder). We obtain a AIM strategy (aggressive in
the money), which burns part of the windfall trading gains to sell faster and
reduce the risk for the time left, as observed by Almgren and Lorenz [2007].
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Theorem 4. Let µ > 0 and 3 ≤ k ≤ N . For Nx2/k < c < Nx2 any optimal

control for J̃k(x, c) in (40,41,42) must satisfy

y > 0 and z1 ≤ z2 ≤ · · · ≤ zk . (44)

For c ≥ Nx2, the optimal value is attained by the unique optimal control
y = z1 = · · · = zk = 0 (immediate liquidation) and for c = Nx2/k it is
attained by the unique optimal control y = (k − 1)x/k and z1 = · · · = zk =
x2(k − 1)N/k2 (linear profile).

Proof. It is easy to see by induction that J̃k(x, c) ≥ 0, and that for c ≥ Einst =

Nx2 the minimum value J̃k(x, c) = 0 is attained only for z1 = · · · = zk = 0
and y = 0. For c = Nx2/k, the only point that satisfies (C1)–(C3) in (42) is
y = (k−1)x/k and z1 = · · · = zk = x2(k−1)N/k2, which indeed corresponds
to the linear strategy. For c < Nx2, suppose y = 0. Then, by (40) we have
E(y, z) ≥ Nx2, a contradiction.

Now suppose zs > zr for r > s. Let

z̄ = (przr + pszs)/(pr + ps) and δ = zr − zs .

Then δ < 0, and

zr = z̄ + δps/(pr + ps) and zs = z̄ − δpr/(pr + ps) . (45)

Let A = µ
∑n

j=1 pjzj = (pr + ps)µz̄ + µ
∑

j 6=r,s pjzj , and

∆ = V (y, z̃1, . . . , z̃n)− V (y, z1, . . . , zn) (46)

with z̃i = zi for i /∈ {r, s} and z̃r = z̃s = z̄. Since E(y, z̃1, . . . , z̃n) =
E(y, z1, . . . , zn), the control (y, z̃1, . . . , z̃n) satisfies (C1) in (42). Since z sat-
isfies (C2) in (42), i.e. zr ≥ y2N/(k− 1), we have z̄ > zr ≥ y2N/(k− 1), and
hence z̃ also satisfies (C2).

We shall prove that ∆ < 0, contradicting the optimality of (y, z1, . . . , zn).

To shorten notation, let J(x, c) = J̃k−1(x, c). Since J(x, c) is convex,

prJ(y, zr) + psJ(y, zs) ≥ (pr + ps) J
(
y,
przr + pszs
pr + ps

)
= (pr + ps) J(y, z̄) .

Hence,

∆ ≤
∑
i=r,s

pi

[(
µz̄ − yEiN−1/2 − A

)2 − (µzi − yEiN−1/2 − A
)2]

.

Using (45), Er > Es, δ < 0 and y > 0, we obtain ∆ < 0.
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Figure 1: Backwards optimization in the binomial framework. If we already
have the efficient frontier to sell from time tj onwards, at time tj−1 we need
to determine an optimal control (y, z+, z−): we sell x−y shares between tj−1

and tj, and commit ourselves to trading strategies for the remainder chosen
from the set of efficient strategies for tj to tN depending on whether the stock
goes up or down. If the stock goes up (down), we follow the efficient strategy
with expected cost z+ (z−). The choice z+ = z− = z0 would lead to a path-
independent strategy. By choosing z+ > z− (and y) optimally, we can reduce
the variance of the whole strategy measured at tj−1. Instead of the square
shaped point on the static frontier at time tj−1, we obtain a point on the
improved frontier (blue dashed line).

5 Numerical Example

5.1 Binomial Model

The simplest approximation scheme of the type outlined in Section 4 are step
functions

z(ξ) =

{
z+ for ξ ≥ 0

z− for ξ < 0
.

Assuming that the price innovations ξ are independent Gaussian random
variables ξ ∼ N (0, 1), straightforward calculation yields

E+ = E[ξ | ξ ≥ 0] =
√

2/π, E− = E[ξ | ξ < 0] = −E+ ,

V+ = Var[ξ | ξ ≥ 0] = 1− 2/π, V− = Var[ξ | ξ < 0] = 1− 2/π ,

and p+ = P[ξ ≥ 0] = 1/2, p− = P[ξ < 0] = 1/2.
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That is, the adaptivity of our trading strategy is restricted to reacting to
the observation whether the stock price goes up or down during each of the
N trading periods. As N →∞, this simple model of adaptivity will converge
to the fully adaptive optimal strategy, similar to a binomial tree converging
to Brownian motion. Figure 1 illustrates this binomial framework.

5.2 Numerical Results

For numerical computations, we discretize the state space of the value func-
tions Jk(x, c). The figures presented in this section were generated for T = 1,
N = 50 time steps (τ = 1/50) with Nx = 250 grid points for the relative
portfolio size x ∈ [0, 1] and Nc = 100 in the cost dimension (Nc points on the
frontier for each value of x). Starting with J1(x, c), we successively deter-
mine J2(x, c), . . . , JN(x, c) by means of (42), using interpolated values from
the grid data of the previous value function. We use standard direct search
methods to find the optimal control (y, z+, z−). Since the optimization prob-
lem is convex (Section 3.3), local minima are global optimal solutions. For
each level of x we have to trace an efficient frontier. The function value (9)
for the linear strategy at the upper-left end of the frontier is readily available;
from there, we work towards the right (increasing c) and compute optimal
controls for each c by taking the optimal controls for the point c− h (where
h is the discretization along the cost dimension) as the starting point for the
iteration. Note that the optimal control for c−h is indeed a feasible starting
point for the optimization problem with maximal cost c.

Figure 5 shows the set of efficient frontiers at the initial time t = 0
for the entire initial portfolio (relative portfolio size x = 1) for different
values of the market power 0 ≤ µ ≤ 0.15. (Recall the discussion about
the order of magnitude for µ in Section 3.2.) The horizontal axis is the
expectation of total cost, and the vertical axis its variance. We scale both
expectation and variance by their values for the linear trajectories (9). The
two blue marks on the frontier for µ = 0.15 correspond to optimal adaptive
strategies with the same mean, but lower variance (below the black mark)
and same variance, but lower mean (to the left of the black mark) as the
static strategy corresponding to the black mark. The inset shows the cost
distributions associated with these three strategies (trading costs increase to
the right of the x-axis). Those distributions were determined by applying
these three strategies to 105 randomly sampled paths of the stock price: for
each sample path (ξ1, . . . , ξN) the final cost CN is obtained by sequentially
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applying the optimal one-step controls (y∗k(x, c), z
∗
k±(x, c)) associated with

Jk(xk, c) (respectively, their interpolated values over the discretized state
space),

xi+1 = y∗i (xi, ci)

ci+1 =

{
z∗i+(xi, ci) ξi+1 ≥ 0

z∗i−(xi, ci) ξi+1 < 0

Ci+1 = Ci + µN(xi − xi+1)
2 − xi+1ξi+1/

√
N

with x0 = 1, C0 = 0 and the initial limit c0 = E for the expected cost. Ci is
measured in units of σ

√
TX, the standard deviation of the initial portfolio

value due to the stock price volatility across the trading horizon.
The adaptive cost distributions are slightly skewed, suggesting that mean-

variance optimization may not give the best possible solutions. Figure 6
shows four static and adaptive cost distributions along the frontier. In the
upper left corner (near the linear strategy), the adaptive cost distributions
are almost Gaussian (Point #1); indeed, for high values of V adaptive and
static strategies coincide. As we move down the frontiers (towards less risk-
averse strategies), the skewness first increases (Point #2). Interestingly, as
we move further down, where the improvement of the adaptive strategy be-
comes larger, the adaptive distributions look more and more Gaussian again
(Point #3 and #4). All adaptive distributions are strictly preferable to their
reference static strategy, since they have lower probability of high costs and
higher probability of low costs. Table 1 compares the semi-variance, value-
at-risk (VaR) and conditional value-at-risk (CVaR) [see Artzner, Delbaen,
Eber, and Heath, 1999, for instance] for the four distribution pairs shown
in Figure 6. For Gaussian random variables, mean-variance is consistent
with expected utility maximization as well as stochastic dominance (see for
instance Bertsimas, Lauprete, and Samarov [2004], Levy [1992]). As the
adaptive distributions are indeed not too far from Gaussian, we can expect
mean-variance to give reasonable results.

To illustrate the behavior of adaptive policies in the binomial framework,
Figure 4 shows trajectories for two sample paths of the stock price in a small
instance with N = 4. The inset shows the underlying binomial decision tree.

Figure 7 shows optimal adaptive and static trading for N = 50. The
static strategy is chosen such that it has the same expected cost (yet higher
variance) as the adaptive policy.
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Figure 2: Left plot shows J2(x, c) for different values of µ ∈
{0.25, 0.5, 0.75, 1.0} as a function of c (and x = 1). The black line is J ′2(x, c).
The right plot shows ‖J2 − J ′2‖1 as a function of µ.

As can be seen, the optimal adaptive policies are indeed “aggressive in
the money”. If the stock price goes up, we incur unexpectedly smaller total
trading cost and react with selling faster (burning some of the gains), whereas
for falling stock price, we slow down trading.

The numerical results presented so far were obtained using the value
function JN , (21, 22). Let us briefly discuss the results for the value func-

tion definition J ′N , (35, 36) (respectively J̃ ′ in (43)). As mentioned there,
J ′N(x, c) ≥ JN(x, c). In the specification of JN (respectively, E ) the trader
can reduce his variance by destroying money in order to make a positive
outcome less so (see discussion in Section 3.3). In the specification of J ′N
(respectively, E ′) this is not possible. The numerical results show that while
this effect is important for small values of N and large values of µ (see Fig-
ure 2), it diminishes very rapidly as N increases (see Figure 3). In fact, the
value of µ = 2 in Figure 3 is rather large (recall our discussion for the order
of µ in Section 3.2), and for realistic values of µ the difference is even smaller.
That is, while the specification of JN and E (X,N) allow for the undesirable
peculiarity that the trader gives away money in positive outcomes, our nu-
merical results show that this effect does not play a big role in practice. The
specification of JN has the advantage that the associated dynamic program
is convex, which makes the numerical optimization easier.
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Figure 3: The first three plots show JN(x, c) (blue solid line) vs. J ′N(x, c)
(black solid line) for N = 2, 3, 4 and µ = 2. For N = 2, the two curves
are clearly separated. For N = 3 there is only a visible difference for larger
values of c, and for N = 4 the two curves are almost identical. The black
dashed line is the static efficient frontier (i.e. µ = 0), which coincides for
N = 2 with J ′2(x, c) in the first plot. The last plot shows ‖JN − J ′N‖1 as a
function of N .
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#1 #2 #3 #4
static adapt static adapt static adapt static adapt

E[·] 1.68 1.52 2.96 2.27 7.00 3.92 13.00 7.09
Var[·] 5.98 5.98 3.19 3.19 1.20 1.20 0.44 0.44
SVar[·] 3.01 3.35 1.61 1.89 0.60 0.68 0.22 0.22
VaR5.0% 5.70 5.85 5.90 5.58 8.80 5.83 14.09 8.17
VaR2.5% 6.47 6.77 6.46 6.38 9.14 6.34 14.29 8.41
VaR1.0% 7.37 7.91 7.12 7.35 9.54 7.02 14.54 8.73
VaR0.5% 7.98 8.62 7.56 8.00 9.82 7.56 14.70 8.97
VaR0.1% 9.23 10.18 8.48 9.45 10.38 8.57 15.04 9.43
VaR5.0% 6.72 7.09 6.65 6.67 9.25 6.56 14.36 8.51
VaR2.5% 7.43 7.91 7.15 7.39 9.57 7.06 14.54 8.75
VaR1.0% 8.23 8.87 7.71 8.26 9.93 7.71 14.77 9.06
VaR0.5% 8.76 9.52 8.14 8.87 10.20 8.19 14.91 9.28
VaR0.1% 9.94 10.96 8.97 10.16 10.69 9.19 15.20 9.80

Table 1: Statistics for the adaptive and static cost distribution functions
shown in Figure 6, obtained by Monte Carlo simulation (105 sample paths).
For the random variable C, the total cost in units of Elin, the value-at-risk
VaRβ is defined by P[C ≥ VaRβ(C)] = β, and the conditional-value-at-risk
CVaRβ(C) = E[C |C ≥ VaRβ(C)]. Thus, low values for VaR and CVaR are
desirable.

6 Conclusion

By a suitable application of the dynamic programming principle, we show
how one can obtain fully optimal adaptive policies for the optimal execution
problem considered by Almgren and Chriss [2000]. The optimal adaptive
policies significantly improve over static trade schedules, with the improve-
ment being larger for large portfolios. As already observed by Almgren and
Lorenz [2007], those adaptive policies are “aggressive in the money”: If the
price moves in your favor, then spend those gains on market impact costs by
trading faster for the remainder of the program. If the price moves against
you, then reduce future costs by trading more slowly. This kind of correlat-
ing the profit in the current period to the expected profit in the remaining
time can also be observed for the classical portfolio optimization problem in
a multiperiod setting [Lorenz, 2008, Richardson, 1989] .



Lorenz/Almgren, Optimal Adaptive Execution January 23, 2011 31

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Sh
ar

es
 r

em
ai

ni
ng

 x
(t

)

0 1 2 3 4

S(t)−S
0

t

Figure 4: Optimal adaptive trading for N = 4 time steps, illustrating the
binomial adaptivity model. The blue trajectory corresponds to the rising
stock price path, and sells faster than red trajectory (falling stock price path).
The inset shows the schematics of the stock price on the binomial tree. x1

at t = 1 is the same for all adaptive trajectories because x1 is determined at
t = 0 with no information available. Only from t = 1 onwards the adaptive
trajectories split.
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Figure 5: Adaptive efficient frontiers (in the binomial model de-
scribed in Section 5.1) for different values of the market power µ ∈
{0.025, 0.05, 0.075, 0.15}, and N = 50. The expectation and variance of
the total trading cost are normalized by their values of a linear trajectory
(VWAP) and plotted in a semilogarithmic scale. The grey shaded region is
the set of values accessible to static trading trajectories and the black line is
the static efficient frontier, which is also the limit µ → 0. The blue dashed
curves are the improved efficient frontiers, with the improvement increasing
with µ. The inset shows the distributions of total cost corresponding to the
three points marked on the frontiers, determined by applying these three
strategies to 105 randomly sampled paths of the stock price.
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Figure 6: Distributions of total cost corresponding to four points on the fron-
tier (for µ = 0.15 and N = 50), determined by applying the corresponding
strategies to 105 randomly sampled paths of the stock price. Table 1 gives
their VaR and CVar values for different levels of confidence. Especially for
those values of V where the improvement is large, the adaptive distribu-
tions are very close to Gaussian. The static distribution functions are always
Gaussian.
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Figure 7: Optimal adaptive strategy for the point on the efficient frontier in
Figure 5, having the same variance but lower expected cost than the static
trajectory (solid black line), computed using 50 time steps. Specific trading
trajectories are shown for two rather extreme realizations of the stock price
process. The blue trajectory incurs impact costs that are comparable to the
static trajectory, but has trading gains because it holds more stock as the
price rises. The red trajectory has lower impact costs because of its slower
trade rate, but it has trading losses because of the price decline. The mean
and variance of the adaptive strategy cannot be seen in this picture, because
they are properties of the entire ensemble of possible realizations.


