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Abstract

We present an order flow model framework for limit order driven mar-

kets. Different from previous models we explicitly model a reference

price process that “sweeps” the limit order book as it fluctuates up and

down. Our framework allows us to use any stochastic process to model

this reference price and very general specifications of the limit order

flow. We believe that this framework can fruitfully combine order flow

models with well-studied models for stock price processes and provides

a step towards developing realistic, yet tractable models for complex

limit order driven markets. We use public order data from SWX as an

example to estimate the model parameters.

Most modern stock exchanges use automated auction systems to facil-

itate trading. Examples of purely automated auction markets include Xe-

tra (Frankfurt/Germany), SWX (Swiss Stock Exchange), Hong-Kong, and

ECNs such as Island. Such kind of markets operate as purely order-driven

electronic stock markets without market makers, and liquidity is provided

only by public orders. Contrary, in a quote-driven market, designated mar-

ket makers supply liquidity continuously, quoting bid and ask prices. Hybrid

trading structures, for instance NYSE and NASDAQ, may combine both

features (see e.g. Domowitz [1993] for a taxonomy of trading systems).
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Modeling Limit Order Book Markets

A tractable model of a limit order driven market would be of tremendous

value. It would not only help to better understand the dynamics of limit

order driven markets from a theoretical point of view, but would be very

valuable in practice as well. It would make it possible to evaluate and fine-

tune intraday trading and order placement strategies, instead of backtesting

solely using historical order flow. Clearly, trading strategies that use infor-

mation from the order book are superior to such that only use transaction

information (stock price), since every order that is submitted may be inter-

preted as new information.

However, the inherent complexity of such kind of a market makes it very

difficult to develop a model that is at the same time realistic, analytically

or at least computationally tractable, and can be reasonably well fitted to

actual market activity. While very accurate models for stock price processes

have been developed, modeling order book dynamics is still in its infancy

with some notable exceptions.

Smith et al. [2003] model order driven markets under the assumption

of random order flow. The general idea is that the aggregated effect of all

market participants are flows of buy and sell orders with certain distributions

for limit price, size etc. Smith et al. assume that limit orders (of fixed order

size) arrive with the same frequency at every possible price. Using analytical

methods and numerical simulations they estimate quantities of interest such

as the expected order book shape.

A slightly different approach is used by Chiarella and Iori [2002]: they

simulate an order driven market not by modeling aggregate order flows, but

by setting up a number of heterogeneous agents who trade with each other

via an order matching mechanism. The agents set their limit prices individu-

ally according to some fixed trading strategies, ranging over fundamentalist,

chartist and “noise-induced” (uninformed) components. Chiarella and Iori

argue that such kind of agent based models exhibit similar features as real

markets. However, from practical point of view it is rather hard to fit the

model to historical data.

2



Reference Price Process

We propose a modeling approach that is similar to Smith et al. [2003], but

differs in a very important aspect. We also start by modeling limit orders

as random order flow, governed by some kind of distribution. But instead of

modeling the flow of market orders (respectively, marketable limit orders)

that generate trades with the limit orders waiting in the order book, we

model a reference price process that “sweeps” the limit order book as it

fluctuates up and down. This process is to be understood as a virtual

reference, not as the actual stock price process. Every time the reference

price process sweeps over bid or ask limit orders stored in the book, these

orders are executed at their limit price. Consequently, the resulting sequence

of transaction prices is very closely linked to that virtual reference price

process, though not exactly identical. Instead of a continuous stock price

path this model generates a discrete sequence of transactions with varying

volume – a realistic feature indeed.

In this paper, we shall only give a brief informal description and analysis

of the model. For a mathematically rigorous presentation the reader is

referred to Osterrieder [2007]. In this paper we mainly focus on numerical

results for public order book data from SWX.

Let us describe the model more explicitly: The reference price process

follows a continuous time random walk, which we may choose to make the

dynamics as realistic as we wish. In the most general setting it may follow

any semimartingale dynamics, but for concreteness here we shall consider

processes of the form

dXt/Xt = µtdt + σt dWt (1)

where W is a standard Brownian motion. µt and σt are – possibly time-

dependent – drift and volatility coefficients.

Limit orders are submitted relative to this price and arrive in discrete

time. This limit order flow is modeled by a Poisson process, which describes

the number of orders that arrive in a certain subset of a three-dimensional

space spanned by time, relative limit order price and limit order size (see

Osterrieder [2007] for details). The idea behind this model is that there is

a large number of potential buyers and sellers who act independently from

each other, submitting limit orders every now and then. Other than Smith
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et al. [2003], this model allows for the more realistic case of non-uniform

order sizes.

Buy orders are only allowed to be placed below the reference price and

sell orders above. We assume that the flow of limit order submission does

not influence the reference price (1). Whenever the reference price reaches a

limit order that is stored in the book, this limit order is completely executed

and removed from the book. This means that we do not consider time

priority or the possibility of partial execution. We model order cancellation

by introducing a cancellation rate, which governs the probability of any

given order being canceled in a certain period of time.

This framework is very versatile. While the reference price process is

rather straightforward, the order arrival process and the cancellation process

make the model very complex in general. The specification of the order

arrival process in the three-dimensional space of time, relative limit price

and order size allows for very general dependencies between these variables.

In order to obtain a practical model, further assumptions will have to be

made, which we will discuss below.

The key advantage of our model is that the stock price is not a process

that is a resulting process of other model input parameters (as in the mod-

els of Smith et al. [2003] or Chiarella and Iori [2002], for instance), but is

modeled explicitly. Instead of requiring a great effort to calibrate the model

such that the resulting stock price process is realistic and fitted to the ob-

servable market volatility, in our model the stock price process is realistic

from the beginning: we can either use a simple Geometric Brownian motion

with constant volatility, or more complex models with stochastic volatility

etc. in order to capture realistic features. We believe that this approach

can fruitfully combine order flow models with well-studied models for stock

price processes. One can think of the reference price process as a continuous

stream of incoming market orders, which manifest themselves once they hit

either the bid or the ask price.

Theoretical Properties

The model outlined above allows for some interesting analytical analysis.

As shown by Osterrieder [2007], the order book can be described as the

difference of two doubly stochastic Poisson processes at every point in time.
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Equivalently, a characterization as the difference of two infinite sums of

Bernoulli distributed random variables can be given. From there various

quantities and properties of interest can be derived, for instance the relation

between the volatility of the stock price and the volume of orders in the

order book, the distributions of bid and ask prices, or the time-to-execution

of a limit order in the book.

A very interesting application is the relation between the distribution

of the relative limit price of arriving orders and the distribution of traded

volume. Bouchaud et al. [2002] observed that the density of the distribution

of the distance of arriving orders relative to the current price follows a power-

law rule with parameter 1.6 (also see Zovko and Farmer [2002]). Plerou et al.

[2001] investigated the distribution of traded volume. For V∆t, the traded

volume in an infinitesimal small time interval, it was found as

P (V∆t > v) ∼ 1/vλ, v ∈ R+,

where λ = 1.7 ± 0.1.

Interestingly, in the order book model outlined above, it can be shown

under fairly general conditions on the reference price process that indeed a

value of λ = 5
3
≈ 1.67 follows from 1.6 as the parameter in the order arrival

density. The precise formula is

λ = β/(1 − γ),

where β is a parameter which describes a property of the stock price process.

Use β = 1 in the equation above and you will be able to recover 1.6 and 1.67

respectively. The reader is referred to Osterrieder [2007] for more theoretical

results in this model.

Data

Our dataset contains the history of trades and public orders1 of stocks traded

on SWX between May 2005 and January 2007.

The Swiss Exchange (SWX) is one of the world’s most technologically

advanced securities exchanges. It is a purely order-driven market, and was

the first stock exchange to launch a fully computerized, integrated trading

1Provision of public historical SWX order book data by UBS AG is gratefully ac-

knowledged.
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system in August 1996. With a total exchange turnover of 1.8 trillion CHF in

2007, and a market capitalization of 1.4 trillion CHF, SWX is among the top

ten international stock exchanges. Trading takes place continuously during

the trading day with automatic matching of orders based on the usual rules

of price and time priority. There are no market makers or floor traders with

special obligations or with privileged access to trading. Liquidity is provided

exclusively through limit orders, and the whole central computerized order

book is public and available in real time.

Besides the public order book and public transactions, SWS allows off-

order book trading under certain circumstances. We do not consider this

kind of order flow and we do not take account of hidden orders or transac-

tions during the opening and closing auctions.

For each stock, our dataset reports the transaction data (time stamp,

price, and volume in number of shares), the order flow entering the book

(time stamp, price, volume in number of shares, and side, i.e. bid or ask),

and order cancellations (time stamp, price, and canceled volume in number

of shares). Each order has a unique ID, by which it can be traced throughout

the trading day. Using this information, the state of the order book can

be reconstructed for any given point of time in the sample period. For the

presentation in this paper, we choose UBS (UBSN/CH0024899483). Exhibit

1 shows a typical order book.

Model Implementation

Recall that in our framework we need to specify the parameters of the stock

price process (1), the parameters of the order arrival process as well as the

cancellation rates. As mentioned above, our model allows for very complex

specifications with very general dependencies between relative limit price,

order size and time.

For fitting the reference price process to historical stock price data a lot

of work has been done before. As argued above, here we see one of the key

advantages of our model. In the simplest implementation, we model the

reference price as a Geometric Brownian motion with constant volatility.

While constant volatility is certainly a very simplified assumption, for very

short term intraday time horizons we can expect reasonable results. Im-

proved models could use stochastic volatility models or also mean-reversion
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Figure 1: Typical order book of UBS (UBSN/CH0024899483).

or momentum based price processes.

The order arrival process can be empirically estimated by observing ar-

rival times, relative prices and sizes of all incoming orders. In the following,

we will present the results for the sell (ask) order book of UBS as an example.

The results for the buy (bid) side of the order book are similar.

We first analyse the frequency of arriving limit orders. Not surprisingly,

the rate varies significantly across the day. Similar to the well-known U-

shape intraday pattern of traded volume, we find strong U-shape seasonality

for the order arrival frequency as well. Exhibit 2 shows this intraday pattern

for UBS.

Our analysis shows that the inter-arrival times of limit orders for UBS are

Weibull(k, λ) distributed with shape parameter k ≈ 0.7, see Exhibit 3. The

Weibull distribution is a generalization of the exponential distribution, which

is recovered as a special case with the shape parameter k = 1. Compared

to exponentially distributed inter-arrival times, Weibull distributed inter-

arrival times with shape parameter k < 1 lead to order arrivals that are

much more clustered in time. Exhibit 4 illustrates this behavior.

We next analyse the distribution of order sizes of arriving limit orders.
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Figure 2: Typical U-shape intraday pattern of the order arrival rate for

UBS.

As it is well known, orders have a tendency to cluster in size. For instance,

orders sizes of multiples of 100 or 1000 are much more frequent than odd-

sized orders. Because of this irregularity, it is hard to fit the empirical

distribution of order sizes to any “standard” probability distribution. For

our order book simulations, we found it more appropriate to sample order

sizes from the empirical distribution in Exhibit 5 directly. Interestingly, we

found that order sizes also feature a U-shaped intraday pattern (see Exhibit

6), similar to the intraday pattern of the order arrival rate in Exhibit 2.

For the (unconditional) prices of arriving limit orders, as Bouchaud et al.

[2002], Zovko and Farmer [2002] we find that the limit prices relative to the

last transaction price follow a power-law like distribution (see Exhibit 7).

Our empirical analysis showed that there seems to be a slight tendency of

smaller orders being placed closer to the best bid/ask and larger orders

deeper in the book.

For the estimation of the cancellation rates of limit orders we must take

into account the “censoring effect”: Simply considering the times between

order submission and order deletion (given a deletion occurred) for all limit
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Figure 3: Inter-arrival times of limit orders follow a Weibull(k, λ) distribu-

tion with shape parameter k < 1.

Figure 4: Upper sequence has exponentially distributed inter-arrival times,

and lower sequence Weibull distributed inter-arrival times with shape pa-

rameter k = 0.5 with same expectation. Weibull-distributed inter-arrival

times with k < 1 result in more clustered arrival times.
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Figure 5: Histogram plot of limit order sizes for UBS.
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Figure 6: Typical U-shape intraday pattern of order sizes for UBS.
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Figure 7: Limit prices relative to the last transaction price for UBS limit

orders.

orders neglects the effect that we only see those orders being deleted which

were not executed. In terms of survival analysis, this corresponds to censored

data points (Type III, or random censoring). The well-known Kaplan-Meier

estimator is then the standard technique to estimate times-to-cancellation

and cancellation rates.

Exhibit 8 shows the distribution of the time-to-cancellation for arriving

UBS limit orders, as obtained by the Kaplan-Meier estimator. A big fraction

of arriving limit orders are deleted from the book very quickly, if they are

not executed. Furthermore, multiples of 30 seconds occur more frequent.

Because of this anomaly, it is again difficult to fit the data to any standard

distribution and we found sampling from the empirical distribution to yield

better results. Our analysis showed that there seems to be a slight depen-

dency between order size and time to cancellation, with larger orders and

especially orders of certain “chunk” sizes (e.g. 1000, 5000, . . . shares) being

canceled much less frequent than smaller orders. Similarly, orders placed

deep into the book with limit prices far away from the best bid/ask also

seem to remain slightly longer in the book before they are canceled.
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Figure 8: Distribution of the time-to-cancelation for arriving UBS limit

orders using the Kaplan-Meier estimator.

An important observation is that the cancellation rate of limit orders

stored in the book is much lower than the cancellation rate of newly arriv-

ing limit orders. That is especially important if we want to simulate the

evolution of the order book starting from some certain initial state (for in-

stance, the current state of some real market order book). The reason is a

classical “survivorship bias”. Many of the newly arriving orders are from

impatient market participants who delete their orders very quickly if they

are not filled (see Exhibit 8). On the other hand, orders that are stored

in the book are typically orders from more patient market participants and

tend to remain in the book longer.

Order Book Shape and Impact Function

Exhibits 9 and 10 show a historical order book evolution of UBS (ask side)

between 10am and 11am on 08/03/2005 in comparison with one sample path

(60 minutes) of our order book simulation starting from the same state of the

order book at 10am. The Exhibits show one random sample path, and hence
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the stock price process in the simulation and in reality (a-posteriori) are of

course different – but the general behavior of the order flows are similar.

If we want to optimize intraday trading or order placement strategies, we

simulate for a collection of sample paths. Furthermore, we can use different

market parameters to assess performance in various scenarios.

Exhibit 11 compares the historical and simulated shape of the orderbook

for UBS (ask side), showing that our simulation indeed gives reasonable

results. The order book shape corresponds to a temporary impact function,

which is the price concession to buy a certain number of shares using a

market order (immediate execution), exhausting the liquidity available at

the first price levels of the order book until we have filled the desired quantity.

Note that if we want to evaluate a trading strategy in our simulation, in

the formulation (1) the reference price is not affected by our own strategy’s

activity. If we want to incorporate permanent price impact of our trading

strategy, we can indeed easily add a feedback term to the dynamics (1) of

the reference price. More detailed results on no-arbitrage considerations in

such a large trader setup can be found in Osterrieder [2007].

Conclusion

We presented an order flow model framework for limit order driven markets.

Limit orders are modeled as random order flow. We allow here for very

complex specifications with very general dependencies between relative limit

price, order size and time of arriving limit orders. This is supplemented by

explicitly modeling a reference price process that “sweeps” the limit order

book as it fluctuates up and down. Our framework allows us to use any

stochastic process to model this reference price. In particular, there is no

need to explicitly model market order flow. We believe that this framework

can fruitfully combine order flow models with well-studied models for stock

price processes and provides a step towards developing realistic, yet tractable

models for complex limit order driven markets.
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