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Abstract. In the k-search problem, a player is searching for the k high-
est (respectively, lowest) prices in a sequence, which is revealed to her
sequentially. At each quotation, the player has to decide immediately

whether to accept the price or not. Using the competitive ratio as a
performance measure, we give optimal deterministic and randomized al-
gorithms for both the maximization and minimization problems, and
discover that the problems behave substantially different in the worst-
case. As an application of our results, we use these algorithms to price
“lookback options”, a particular class of financial derivatives. We derive
bounds for the price of these securities under a no-arbitrage assumption,
and compare this to classical option pricing.

1 Introduction

1.1 k-Search Problem

We consider the following online search problem: a player wants to sell (re-
spectively, buy) k ≥ 1 units of an asset with the goal of maximizing her profit
(minimizing her cost). At time points i = 1, . . . , n, the player is presented a price
quotation pi, and must immediately decide whether or not to sell (buy) one unit
of the asset for that price. The player is required to complete the transaction
by some point in time n. We ensure that by assuming that if at time n − j
she has still j units left to sell (respectively, buy), she is compelled to do so in
the remaining j periods. We shall refer to the profit maximization version (sell-
ing k units) as k-max-search, and to the cost minimization version (purchasing k
units) as k-min-search.

In this work, we shall make no modeling assumptions on the price path except
that it has finite support, which is known to the player. That is, the prices are
chosen from the real interval I = {x |m ≤ x ≤ M}, where 0 < m < M . We
define the fluctuation ratio ϕ = M/m. Let P =

⋃

n≥k In be the set of all price
sequences of length at least k. Moreover, the length of the sequence is known to
the player at the beginning of the game.
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Sleator and Tarjan [1] proposed to evaluate the performance of online algo-
rithms by using competitive analysis. In this model, an online algorithm ALG is
compared with an offline optimum algorithm OPT (which knows all prices in
advance), on the same price sequence. Here, the price sequence is chosen by an
adversary out of the set P of admissible sequences. Let ALG(σ) and OPT(σ)
denote the objective values of ALG and OPT when executed on σ ∈ P. The
competitive ratio of ALG is defined for maximization problems as

CR(ALG) = max

{
OPT(σ)

ALG(σ)

∣
∣
∣ σ ∈ P

}

,

and similarly, for minimization problems

CR(ALG) = max

{
ALG(σ)

OPT(σ)

∣
∣
∣ σ ∈ P

}

.

We say that ALG is c-competitive if it achieves a competitive ratio not larger
than c. For randomized algorithms, we substitute the expected objective va-
lue E[ALG] for ALG in the definitions above.

Related Work. In 2001, El-Yaniv, Fiat, Karp and Turpin studied, among other
problems, the case k = 1, i.e. 1-max-search, and the closely related one-way
trading problem [2] with the competitive ratio (defined above) as performance
measure. In the latter, a player wants to exchange some initial wealth to some
other asset, and is again given price quotations one-by-one. However, the player
may exchange an arbitrary fraction of her wealth for each price. Hence, the
k-max-search problem for general k ≥ 1 can be understood as a natural bridge
between the two problems considered in [2], with k → ∞ corresponding to the
one-way trading problem. This connection will be made more explicit later.

Several variants of search problems, which will discussed below, have been ex-
tensively studied in operations research and mathematical economics. However,
traditionally most of the work follows a Bayesian approach: optimal algorithms
are developed under the assumption that the prices are generated by a known
distribution. Naturally, such algorithms heavily depend on the underlying model.

Lippmann and McCall [3, 4] give an excellent survey on search problems
with various assumptions on the price process. More specifically, they study the
problem of job and employee search and the economics of uncertainty, which
are two classical applications of series search problems. In [5], Rosenfield and
Shapiro study the situation where the price follows a random process, but some
of its parameters may be random variables with known prior distribution. Hence,
the work in [5] tries to get rid of the assumption of the Bayesian search models
that the underlying price process is fully known to the player. Ajtai, Megiddo
and Waarts [6] study the classical secretary problem. Here, n objects from an
ordered set are presented in random order, and the player has to accept k of
them so that the final decision about each object is made only on the basis
of its rank relative to the ones already seen. They consider the problems of
maximizing the probability of accepting the best k objects, or minimizing the
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expected sum of the ranks (or powers of ranks) of the accepted objects. In this
context, Kleinberg designed in [7] an (1 − O(1/

√
k))-competitive algorithm for

the problem of maximizing the sum of the k chosen elements.

Results & Discussion. In contrast to the Bayesian approaches, El-Yaniv et al. [2]
circumvent almost all distributional assumptions by resorting to competitive
analysis and the minimal assumption of a known finite price interval. In this
paper we also follow this approach. The goal is to provide a generic search strat-
egy that works with any price evolution, rather than to retrench to a specific
stochastic price process. In many applications, where it is not clear how the gen-
erating price process should be modeled, this provides an attractive alternative
to classical Bayesian search models. In fact, in the second part of the paper we
give an application of k-max-search and k-min-search to robust option pricing
in finance, where relaxing typically made assumptions on the (stochastic) price
evolution to the minimal assumption of a price interval yields remarkably good
bounds.

Before we proceed with stating our results, let us introduce some notation.
For σ ∈ P, σ = (p1, . . . , pn), let pmax(σ) = max1≤i≤n pi denote the maximum
price, and pmin(σ) = min1≤i≤n pi the minimum price. Let W denote Lambert’s
W -function, i.e., the inverse of f(w) = w exp(w). For brevity we shall write
f(x) ∼ g(x), if limx→∞ f(x)/g(x) = 1. It is well-known that W (x) ∼ lnx.

Our results for deterministic k-max-search are summarized in Theorem 1.

Theorem 1. Let k ∈ N, ϕ > 1. There is a r∗-competitive deterministic algo-
rithm for k-max-search, where r∗ = r∗(k, ϕ) is the unique solution of

ϕ − 1

r∗ − 1
=

(

1 +
r∗

k

)k

, (1)

and there exists no deterministic algorithm with smaller competitive ratio. Fur-
thermore, we have

(i) r∗(k, ϕ) ∼ k+1
√

kkϕ for fixed k ≥ 1 and ϕ → ∞,
(ii) r∗(k, ϕ) ∼ 1 + W (ϕ−1

e ) for fixed ϕ > 1 and k → ∞.

The algorithm in the theorem above is given explicitly in Section 2. Interestingly,
the optimal competitive deterministic algorithm for the one-way trading problem
studied in [2] has competitive ratio exactly 1 + W (ϕ−1

e ) (for n → ∞), which
coincides with the ratio of our algorithm given by the theorem above for k → ∞.
Hence, k-max-search can indeed be understood as a natural bridge between the
1-max-search problem and the one-way trading problem.

For deterministic k-min-search we obtain the following statement.

Theorem 2. Let k ∈ N, ϕ > 1. There is a s∗-competitive deterministic algo-
rithm for k-min-search, where s∗ = s∗(k, ϕ) is the unique solution of

1 − 1/ϕ

1 − 1/s∗
=

(

1 +
1

ks∗

)k

, (2)

and there exists no deterministic algorithm with smaller competitive ratio. Fur-
thermore, we have
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(i) s∗(k, ϕ) ∼
√

k+1
2k ϕ for fixed k ≥ 1 and ϕ → ∞,

(ii) s∗(k, ϕ) ∼ (W (−ϕ−1
eϕ ) + 1)−1 for fixed ϕ > 1 and k → ∞.

The algorithm in the theorem above is also given explicitly in Section 2. Sur-
prisingly, although one might think that k-max-search and k-min-search should
behave similarly with respect to competitive analysis, Theorem 2 states that this
is in fact not the case. Indeed, according to Theorems 1 and 2, for large ϕ, the
best algorithm for k-max-search achieves a competitive ratio of roughly k k

√
ϕ,

while the best algorithm for k-min-search is at best
√

ϕ/2-competitive. Simi-
larly, when k is large, the competitive ratio of a best algorithm for k-max-search
behaves like ln ϕ, in contrast to k-min-search, where a straightforward analysis
(i.e. series expansion of the W function around its pole) shows that the best al-
gorithm achieves a ratio of Θ(

√
ϕ). Hence, algorithms for k-min-search perform

in the worst-case rather poorly compared to algorithms for k-max-search.
Furthermore, we investigate the performance of randomized algorithms for

the problems in question. In [2] the authors gave a O(lnϕ)-competitive random-
ized algorithm for 1-max-search, but did not provide a lower bound.

Theorem 3. Let k ∈ N, ϕ > 1. For every randomized k-max-search algorithm
RALG we have

CR(RALG) ≥ (ln ϕ)/2 . (3)

Furthermore, there is a 2 ln ϕ-competitive randomized algorithm for ϕ > 3.

Note that the lower bound above is independent of k, i.e., randomized algorithms
cannot improve their performance when k increases. In contrast to that, by
considering Theorem 1, as k grows the performance of the best deterministic
algorithm improves, and approaches lnϕ, which is only a multiplicative factor
away from the best ratio that a randomized algorithm can achieve.

Our next result is about randomized algorithms for k-min-search.

Theorem 4. Let k ∈ N, ϕ > 1. For every randomized k-min-search algorithm
RALG we have

CR(RALG) ≥ (1 +
√

ϕ)/2 . (4)

Again, the lower bound is independent of k. Furthermore, combined with The-
orem 2, the theorem above states that for all k ∈ N, randomization does not
improve the performance (up to a multiplicative constant) of algorithms for
k-min-search, compared to deterministic algorithms. This is again a difference
between k-max-search and k-min-search.

1.2 Application to Robust Valuation of Lookback Options

In the second part of the paper we will use competitive k-search algorithms
to derive upper bounds for the price of lookback options, a particular class of
financial derivatives (see e.g. [8]). An option is a contract whereby the option
holder has the right (but not obligation) to exercise a feature of the option
contract on or before an exercise date, delivered by the other party – the writer
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of the option. Thus, an option is in general an asymmetric contract. Since the
option gives the buyer a right, it will have a price that the buyer has to pay to
the option writer.

The most basic type of options are European options on a stock. They give the
holder the right to buy (respectively, sell) the stock on a prespecified date T (ex-
piry date) for a prespecified price K. Besides these standard and well-understood
types, there is also a plethora of options with more complex features. One type
are so called lookback options. A lookback call allows the holder to buy the un-
derlying stock at time T from the option writer at the historical minimum price
observed over [0, T ], and a lookback put to sell at the historical maximum.

A fundamental question is to determine the value of an option at time t < T .
Black and Scholes [9] studied European call and put options on non-dividend
paying stocks in a seminal paper. The key argument in their derivation is a no
arbitrage condition. Loosely speaking, an arbitrage is a zero-risk, zero net in-
vestment strategy that still generates profit. If such an opportunity came about,
market participants would immediately start exploiting it, pushing prices until
the arbitrage opportunity ceases to exist. Black and Scholes essentially give a
dynamic trading strategy in the underlying stock by which an option writer can
risklessly hedge an option position. Thus, the no arbitrage condition implies that
the cost of the trading strategy must equal the price of the option to date.

In the model of Black and Scholes trading is possible continuously in time and
in arbitrarily small portions of shares. Moreover, a central underlying assump-
tion is that the stock price follows a geometric Brownian motion (see e.g. [10]),
which then became the standard model for option pricing. While it certainly
shows many features that resemble reality fairly, the behavior of stock prices
in practice is not fully consistent with this assumption. For instance, the distri-
bution observed for the returns of stock price processes are non-Gaussian and
typically heavy-tailed [11], leading to underestimation of extreme price move-
ments. Furthermore, in practice trading is discrete, price paths include price
jumps and stock price volatility is not constant. As a response, numerous mod-
ifications of the original Black-Scholes setting have been proposed, examining
different stochastic processes for the stock price (for instance [12–14]).

In light of the persistent difficulties of finding and formulating the “right”
model for the stock price dynamic, there have also been a number of attempts to
price financial instruments by relaxing the Black-Scholes assumptions instead.
The idea is to provide robust bounds that work with (almost) any evolution of
the stock price rather than focusing on a specific formulation of the stochastic
process. In this fashion, DeMarzo, Kremer and Mansour [15] derive both upper
and lower bounds for option prices in a model of bounded quadratic variation,
using competitive online trading algorithms. In the mathematical finance com-
munity, Epstein and Wilmott [16] propose non-probabilistic models for pricing
interest rate securities in a framework of “worst-case scenarios”. Korn [17] com-
bines the random walk assumption with a worst-case analysis to tackle optimal
asset allocation under the threat of a crash.

In this spirit, using the deterministic k-search algorithms from Section 2
we derive in Section 4 upper bounds for the price of lookback calls and puts,
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under the assumption of bounded stock price paths and non-existence of arbitrage
opportunities. Interestingly, the resulting bounds are remarkably good, showing
similar qualitative properties and quantitative values as pricing in the standard
Black-Scholes model. Note that the assumption of a bounded stock price is indeed
very minimal, since without any assumption about the magnitude of the stock
price fluctuation in fact no upper bounds for the option price apply.

2 Deterministic Search

Let us consider the following reservation price policy RPPmax for k-max-search.
Prior to the start of the game, we choose reservation prices p∗i (i = 1 . . . k).
As the prices are sequentially revealed, RPPmax accepts the first price that is at
least p∗1 and sells one unit. It then waits for the first price that is at least p∗2,
and subsequently continues with all reservation prices. RPPmax works through
the reservation prices in a strictly sequential manner. Note that RPPmax may be
forced to sell at the last prices of the sequence, which may be lower than the
remaining reservations, to meet the constraint of completing the sale.

The proof of the lemma below generalizes ideas used for 1-max-search in [2].

Lemma 1. Let k ∈ N, ϕ > 1. Let r∗ = r∗(k, ϕ) be defined as in (1). Then the
reservation price policy RPPmax with reservation prices given by

p∗i = m

[

1 + (r∗ − 1)

(

1 +
r∗

k

)i−1
]

, (5)

satisfies k pmax(σ) ≤ r∗ · RPPmax(σ) for all σ ∈ P. In particular, RPPmax is a
r∗-competitive algorithm for the k-max-search problem.

Proof. For 0 ≤ j ≤ k, let Pj ⊆ P be the sets of price sequences for which
RPPmax accepts exactly j prices, excluding the forced sale at the end. Then P is
the disjoint union of the Pj ’s. To shorten notation, let us write p∗k+1 = M . Let
ε > 0 be fixed and define the price sequences

∀0 ≤ i ≤ k : σi = p∗1, p
∗
2, . . . , p

∗
i , p∗i+1 − ε, . . . , p∗i+1 − ε

︸ ︷︷ ︸

k

, m,m, . . . ,m
︸ ︷︷ ︸

k

.

Observe that as ε → 0, each σj is a sequence yielding the worst-case ratio
in Pj , in the sense that for all σ ∈ Pj

OPT(σ)

RPPmax(σ)
≤ kpmax(σ)

RPPmax(σ)
≤

kp∗j+1

RPPmax(σj)
. (6)

Thus, to prove the statement we show that for 0 ≤ j ≤ k it holds kp∗j+1 ≤
r∗ · RPPmax(σj). A straightforward calculation shows that for all 0 ≤ j ≤ k

j
∑

i=1

p∗i = m
[
j + k(1 − 1/r∗)

(
(1 + r∗/k)j − 1

)]
.
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But then we have for ε → 0, the competitive ratio is arbitrarily close to

∀ 0 ≤ j ≤ k :
kp∗j+1

RPPmax(σj)
=

kp∗j+1
∑j

i=1 p∗i + (k − j)m
= r∗ .

Thus, from (6) the r∗-competitiveness of RPPmax follows immediately. ⊓⊔
Remark 1. While the proof above shows that the reservations prices in (5) are in
fact the optimal choice, let us also briefly give an intuition on how to construct
them. First, note that we have to choose the p∗i ’s such that

kp∗1
km

!
=

kp∗2
p∗1 + (k − 1)m

!
= · · · !

=
kM

∑k
i=1 p∗i

!
= r∗. (7)

(The nominator is the objective value of OPT on σi as ε → 0, whereas the
denominator is the value of RPPmax on the same sequence.) For 0 ≤ i ≤ k,
let ri = p∗i /p∗1. By comparing adjacent terms in (7), it is easy to see that ri

satisfies the simple recurrence

ri = ri−1

(
1 + p∗1/(km)

)
− 1/k, and r1 = 1 ,

and standard methods readily yield a closed formula for p∗i in terms of p∗1. Fur-
thermore, using (7) we obtain the explicit expression for p∗1.

From the choice of reservation prices in Lemma 1, we see that in fact no deter-
ministic algorithm will be able to do better than RPPmax in the worst-case.

Lemma 2. Let k ≥ 1, ϕ > 1. Then r∗(k, ϕ) given by (1) is the lowest possible
competitive ratio that a deterministic k-max-search algorithm can achieve.

Proof. Let ALG be any deterministic algorithm. We shall show that ALG cannot
achieve a ratio lower than r∗(k, ϕ). Let p∗1, . . . , p

∗
k be the price sequence defined

by (5). We start by presenting p∗1 to ALG, at most k times or until ALG accepts
it. If ALG never accepts p∗1, we drop the price to m for the remainder, and ALG

achieves a competitive ratio of p∗1/m = r∗(k, ϕ). If ALG accepts p∗1, we continue
the price sequence by presenting p∗2 to ALG at most k times. Again, if ALG never
accepts p∗2 before we presented it k times, we drop to m for the remainder and
ALG achieves a ratio not lower than kp∗2/(p∗1 +(k−1)m) = r∗(k, ϕ). We continue
in that fashion by presenting each p∗i at most k times (or until ALG accepts it).
Whenever ALG doesn’t accept a p∗i after presenting it k times, we drop the price
to m. If ALG subsequentially accepts all p∗1, . . . , p

∗
k, we conclude with k times M .

In any case, ALG achieves only a ratio of at most r∗(k, ϕ). ⊓⊔
With the above preparations we are ready to prove Theorem 1.

Proof (of Theorem 1). The first statement follows directly from Lemma 1 and
Lemma 2. To show (i), first observe that for k ≥ 1 fixed, r∗ = r∗(ϕ) must satisfy

r∗ → ∞ as ϕ → ∞, and r∗ is an increasing function of ϕ. Let r+ = k
k

k+1 k+1
√

ϕ.
Then, for ϕ → ∞, we have

(r+ − 1)
(

1 +
r+

k

)k

= (1+ o(1))

(

k
k

k+1 k+1
√

ϕ ·
(

k− 1
k+1 k+1

√
ϕ
)k

)

= (1+ o(1))ϕ .
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Furthermore, let ε > 0 and set r− = (1 − ε)k
k

k+1 k+1
√

ϕ. A similar calculation as
above shows that for sufficiently large ϕ we have

(r− − 1)
(

1 +
r−
k

)k

≥ (1 − 3kε) ϕ .

Thus, r = (1 + o(1)) k
k

k+1 k+1
√

ϕ indeed satisfies (1) for ϕ → ∞. For the proof
of (ii), note that for k → ∞ and ϕ fixed, equation (1) becomes (ϕ−1)/(r∗−1) =
er∗

, and thus
(ϕ − 1)/e = (r∗ − 1) er∗−1 .

The claim follows from the definition of the W -function. ⊓⊔
Similarly, we can construct a reservation price policy RPPmin for k-min-search.

Naturally, RPPmin is modified such that it accepts the first price lower than the
current reservation price.

Lemma 3. Let k ∈ N, ϕ > 1. Let s∗ = s∗(k, ϕ) be defined as in (2). Then the
reservation price policy RPPmin with reservation prices p∗1 > · · · > p∗k,

p∗i = M

[

1 −
(

1 − 1

s∗

)(

1 +
1

ks∗

)i−1
]

, (8)

satisfies RPPmin(σ) ≤ s∗(k, ϕ) · k pmin(σ), and is a s∗(k, ϕ)-competitive deter-
ministic algorithm for k-min-search.

Proof. The proof is analogous to the proof of Lemma 1. Again, for 0 ≤ j ≤ k, let
Pj ⊆ P be the sets of price sequences for which RPPmin accepts exactly j prices,
excluding the forced sale at the end. To shorten notation, define p∗k+1 = m.
Let ε > 0 be fixed and define the price sequences

σi = p∗1, p
∗
2, . . . , p

∗
i , p

∗
i+1 + ε, . . . , p∗i+1 + ε

︸ ︷︷ ︸

k

,M, . . . ,M
︸ ︷︷ ︸

k

, for 0 ≤ i ≤ k .

As ε → 0, each σj is a sequence yielding the worst-case ratio in Pj , in the sense
that for all σ ∈ Pj , 0 ≤ j ≤ k,

RPPmin(σ)

OPT(σ)
≤ RPPmin(σ)

kpmin(σ)
≤ RPPmin(σj)

kp∗j+1

. (9)

Straightforward calculation shows that for ε → 0

∀ 0 ≤ j ≤ k :
RPPmin(σj)

kp∗j+1

=

∑j
i=1 p∗i + (k − j)M

kp∗j+1

= s∗ ,

and hence

∀σ ∈ P :
RPPmin(σ)

kpmin(σ)
≤ s∗ .

Since OPT(σ) ≥ kpmin(σ) for all σ ∈ P, this also implies that RPPmin is s∗-
competitive. ⊓⊔
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Again, no deterministic algorithm can do better than RPPmin in Lemma 3.

Lemma 4. Let k ≥ 1, ϕ > 1. Then s∗(k, ϕ) given by (2) is the lowest possible
competitive ratio that a deterministic k-min-search algorithm can achieve.

The proof of Lemma 4 is identical to the proof of Lemma 2, except that the
adversary now uses the prices defined by (8) and the roles of m and M inter-
changed.

Using Lemma 3 and Lemma 4 we can now prove Theorem 2.

Proof (of Theorem 2). The first part of the Theorem follows directly from
Lemma 3 and Lemma 4. To show (i), first observe that for k ≥ 1 fixed, s∗ = s∗(ϕ)
must satisfy s∗ → ∞ as ϕ → ∞, and s∗ is an increasing function of ϕ. With this
assumption we can expand the right-hand side of (2) with the binomial theorem
to obtain

1 − 1/ϕ

1 − 1/s∗
= 1 +

1

s∗
+

k − 1

2k (s∗)2
+ Θ

(
(s∗)−3

)
=⇒ 1

ϕ
=

k + 1

2k (s∗)2
+ Θ

(
(s∗)−3

)
.

By solving this equation for s∗ we obtain (i). For the proof of (ii), first observe
that for ϕ ≥ 1 fixed, s∗ = s∗(k) must satisfy s∗(k) ≤ C, for some constant C
which may depend on ϕ. Indeed, if s∗(k) → ∞ with k → ∞, then by taking
limits on both sides of (2) yields

1 − 1

ϕ
= lim

k→∞

(

1 +
1

ks∗(k)

)k

= 1 ,

which is a contradiction. Thus, s∗ = Θ(1) and we obtain from (2) by taking
limits

1 − 1/ϕ

1 − 1/s∗
= lim

k→∞

(

1 +
1

ks∗

)k

= e1/s∗

,

and (ii) follows immediately by the definition of the W -function. ⊓⊔

3 Randomized Search

3.1 Lower Bound for Randomized k-max-search

We consider k = 1 first. The optimal deterministic online algorithm achieves a
competitive ratio of r∗(1, ϕ) =

√
ϕ. As shown in [2], randomization can dramat-

ically improve this. Assume for simplicity that ϕ = 2ℓ for some integer ℓ. For
0 ≤ j < ℓ let RPPmax(j) be the reservation price policy with reservation m2j ,
and define EXPO to be a uniform probability mixture over {RPPmax(j)}ℓ−1

j=0.

Lemma 5 (Levin, see [2]). Algorithm EXPO is O(lnϕ)-competitive.

We shall prove that EXPO is in fact the optimal randomized online algorithm
for 1-max-search. We will use the following version of Yao’s principle [18].
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Theorem 5 (Yao’s principle). For an online maximization problem denote
by S the set of possible input sequences, and by A the set of deterministic algo-
rithms, and assume that S and A are finite. Fix any probability distribution y(σ)
on S, and let S be a random sequence according to this distribution. Let RALG

be any mixed strategy, given by a probability distribution on A. Then,

CR(RALG) = max
σ∈S

OPT(σ)

E[RALG(σ)]
≥

(

max
ALG∈A

E

[
ALG(S)

OPT(S)

])−1

. (10)

Note that the first expectation is taken with respect to the randomization of the
algorithm RALG, whereas the second expectation is taken with respect to the
input distribution y(σ).

The reader is referred to standard textbooks for a proof (e.g. Chapter 6 and 8
in [19]). In words, Yao’s principle states that we obtain a lower bound on the
competitive ratio of the best randomized algorithm by calculating the perfor-
mance of the best deterministic algorithm for a chosen probability distribution
of input sequences. Note that (10) gives a lower bound for arbitrary chosen in-
put distributions. However, only for well-chosen y’s we will obtain strong lower
bounds.

We first need to establish the following lemma on the representation of an
arbitrary randomized algorithm for k-search.

Lemma 6. Let RALG be a randomized algorithm for the k-max-search problem.
Then RALG can be represented by a probability distribution on the set of all
deterministic algorithms for the k-max-search problem.

Proof. The proof of the statement is along the lines of the proof of Theorem 1
in [2]. Here we only sketch the proof idea. Using game-theoretic terminology,
RALG may be either a mixed strategy (a distribution on deterministic algo-
rithms, from which one is randomly chosen prior to the start of the game) or a
behavioral strategy (where an independent random choice may be made at each
point during the game). As we have perfect recall in k-search (player has no
memory restrictions), k-search is a linear game. For linear games, every behav-
ioral strategy has an equivalent mixed algorithm. Thus, we can always assume
that RALG is a mixed strategy given by a probability distribution on the set of
all deterministic algorithms. ⊓⊔

The next lemma yields the desired lower bound.

Lemma 7. Let ϕ > 1. Every randomized 1-max-search algorithm RALG satisfies

CR(RALG) ≥ (ln ϕ)/2 .

Proof. Let b > 1 and ℓ = logb ϕ. We define a finite approximation of I by
Ib = {mbi | i = 0 . . . ℓ}, and let Pb =

⋃

n≥k In
b . We consider the 1-max-search

problem on Pb. As Pb is finite, also the set of deterministic algorithms Ab is
finite. For 0 ≤ i ≤ ℓ − 1, define sequences of length ℓ by

σi = mb0, . . . ,mbi,m, . . . ,m . (11)
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Let Sb = {σi | 0 ≤ i ≤ ℓ − 1} and define the probability distribution y on Pb by

y(σ) =

{

1/ℓ for σ ∈ Sb ,

0 otherwise .

Let ALG ∈ Ab. Note that for all 1 ≤ i ≤ ℓ, the first i prices of the sequences σj

with j ≥ i−1 coincide, and ALG cannot distinguish them up to time i. As ALG is
deterministic, it follows that if ALG accepts the i-th price in σℓ−1, it will accept
the i-th price in all σj with j ≥ i−1. Thus, for every ALG, let 0 ≤ χ(ALG) ≤ ℓ−1
be such that ALG accepts the (χ(ALG) + 1)-th price, i.e. mbχ(ALG), in σℓ−1. ALG

will then earn mbχ(ALG) on all σj with j ≥ χ(ALG), and m on all σj with
j < χ(ALG). To shorten notation, we write χ instead of χ(ALG) in the following.
Thus, we have

E

[
ALG

OPT

]

=
1

ℓ





χ−1
∑

j=0

m

mbj
+

ℓ−1∑

j=χ

mbχ

mbj



 =
1

ℓ

[
1 − b−χ

1 − b−1
+

1 − b−(ℓ−χ)

1 − b−1

]

,

where the expectation E[·] is with respect to the probability distribution y(σ).
If we consider the above term as a function of χ, then it is easily verified that it
attains its maximum at χ = ℓ/2. Thus,

max
ALG∈Ab

E

[
ALG

OPT

]

≤ 1

ℓ

(

1 − 1√
ϕ

)
2b

b − 1
≤ 1

lnϕ
· 2b ln b

b − 1
. (12)

Let Υb be the set of all randomized algorithms for 1-max-search with possible
price sequences Pb. By Lemma 6, each RALGb ∈ Υb may be given as a probability
distribution on Ab. Since Ab and Sb are both finite, we can apply Theorem 5.
Thus, for all b > 1 and all RALGb ∈ Υb, we have

CR(RALGb) ≥
(

max
ALG∈Ab

E

[
ALG

OPT

])−1

≥ lnϕ
b − 1

2b ln b
.

Let Υ be the set of all randomized algorithms for 1-max-search on P. Since
for b → 1, we have Ab → A, Υb → Υ and (b − 1)/(2b ln b) → 1

2 , the proof is
completed. ⊓⊔

In fact, Lemma 7 can be generalized to arbitrary k ≥ 1.

Lemma 8. Let k ∈ N, b > 1 and ϕ > 1. Let RALG be any randomized algorithm
for k-max-search. Then, we have

CR(RALG) ≥ (ln ϕ)/2 .

Proof. Let 1 < b < ϕ and ℓ = logb ϕ. We define Pb and Ab as in the proof of
Lemma 7. For 0 ≤ i ≤ ℓ − 1, define

σi = mb0, . . . ,mb0

︸ ︷︷ ︸

k

, . . . ,mbi, . . . ,mbi

︸ ︷︷ ︸

k

,m, . . . ,m
︸ ︷︷ ︸

k(ℓ−i−1)

. (13)
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Let Sb =
⋃

1≤i≤ℓ σi and define the probability distribution y on Pb by

y(σ) =

{

1/ℓ for σ ∈ Sb ,

0 otherwise .

Similarly as in the proof of Lemma 7, we characterize every algorithm ALG ∈ Ab

by a vector (χi)1≤i≤k where mbχi is the price for which ALG sells the i-th unit on
σℓ−1. By construction, we have χ1 ≤ · · · ≤ χk. (Recall that σℓ−1 is the sequence
that is increasing until the very end.) Note that for all 1 ≤ i ≤ ℓ, the sequences
{σj | j ≥ i − 1} are not distinguishable up to time ik, since the first ik prices
of those sequences are identical. Let 0 ≤ j ≤ ℓ − 1 and t = max{i |χi ≤ j}.
When presented σj , ALG accepts all prices mbχi for which χi ≤ j. Hence, we

have OPT(σj) = kmbj and ALG(σj) = (k − t)m +
∑t

s=1 mbχs , i.e. ALG can
successfully sell for its first t reservation prices. To abbreviate notation, let χ0 = 0
and χk+1 = ℓ, and define δt = χt+1 − χt. Taking expectation with respect to
y(σ), we have

E

[
ALG

OPT

]

=
1

ℓ

k∑

t=0

χt+1−1
∑

j=χt

(k − t)m +
∑t

s=1 mbχs

kmbj

=
1

ℓ

k∑

t=0

(
k − t +

∑t
s=1 bχs

) ∑δt−1
j=0 b−j

kbχt

=
1

ℓ

k∑

t=0

(
k − t +

∑t
s=1 bχs

)
(1 − b−δt)

kbχt(1 − b−1)
.

Straightforward yet tedious algebra simplifies this expression to

E

[
ALG

OPT

]

=

∑k
t=1 1 − b−χt +

∑k
t=1 1 − b−(ℓ−χt)

ℓk(1 − b−1)
,

and the maximum over {χ1, . . . , χk} is attained at χ1 = · · · = χk = ℓ/2. Thus,
defining χ = ℓ/2 we have

max
ALG∈Ab

E

[
ALG

OPT

]

≤ 1

ℓ

[
1 − b−χ

1 − b−1
+

1 − b−(ℓ−χ)

1 − b−1

]

=
2b

ℓ (b − 1)

(

1 − 1√
ϕ

)

,

which is exactly (12) in the proof of Lemma 7. Thus, we can argue as in the
remainder of the proof of Lemma 7, and let again b → 1 to conclude that
CR(RALG) ≥ (lnϕ)/2 for all randomized algorithms RALG for k-max-search.

⊓⊔

Giving an optimal randomized algorithm for k-max-search is straightforward.
For 1 < b < ϕ and ℓ = logb ϕ, EXPOk chooses j uniformly at random from
{0, . . . , ℓ − 1}, and sets all its k reservation prices to mbj .

Lemma 9. Let k ∈ N. EXPOk is an asymptotically optimal randomized algo-

rithm for the k-max-search problem with CR(EXPOk) = lnϕ · (b−1)
ln b

ϕ
ϕ−1 .
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Proof. We want to determine

CR(EXPOk) = max
σ∈P

R(σ), where R(σ) =
OPT(σ)

E[EXPOk(σ)]
. (14)

Obviously, a sequence σ that maximizes R is non-decreasing, since rearranging σ
does not change the objective value of OPT, but may increase the objective value
of EXPOk. Let

σ̂ = m, . . . ,m
︸ ︷︷ ︸

k

,mb1, . . . ,mb1

︸ ︷︷ ︸

k

,mb2, . . . ,mb2

︸ ︷︷ ︸

k

, . . . ,mbℓ−1, . . . ,mbℓ−1

︸ ︷︷ ︸

k

,M, . . . ,M
︸ ︷︷ ︸

k

.

We will now show that for every non-decreasing sequence σ = p1, p2, . . . , pN it
holds

R(σ) ≤ R(σ ◦ σ̂) , (15)

where σ ◦ σ̂ is the concatenation of σ and σ̂. Let P be the reservation price of
EXPOk, and let EXPO

j
k(σ) = E

[
EXPOk(σ) | P = mbj

]
. To see the first inequality

we shall show that for all 0 ≤ j < ℓ,

EXPO
j
k(σ ◦ σ̂)

OPT(σ ◦ σ̂)
≤ EXPO

j
k(σ)

OPT(σ)
, (16)

which yields

1

R(σ)
= E

[
EXPOk(σ)

OPT(σ)

]

≥ E

[
EXPOk(σ ◦ σ̂)

OPT(σ ◦ σ̂)

]

=
1

R(σ ◦ σ̂)
,

i.e., R(σ) ≤ R(σ ◦ σ̂). To see (16), note that if pl is the first price accepted by
EXPO

j
k in σ, then EXPO

j
k will also accept pl+1, . . . , pl+k−1. This follows from the

property of σ being non-decreasing and from the fact that all reservation prices
of EXPO

j
k are identical. Now we distinguish two cases: either l = N − k + 1

(i.e. EXPO
j
k accepts the last k prices in σ, possibly forced by the constraint to

finish the sale by the end of the sequence σ) or l < N − k + 1 (i.e. EXPO
j
k can

successfully sell all k units for prices of at least its reservation price mbj). In the
first case, EXPO

j
k(σ) = OPT(σ) and (16) follows trivially, since we always have

EXPO
j
k(σ ◦ σ̂) ≤ OPT(σ ◦ σ̂). In the second case, OPT(σ ◦ σ̂) = kM ≥ OPT(σ)

and EXPO
j
k(σ ◦ σ̂) = EXPO

j
k(σ), since EXPO

j
k already accepted k prices already

before the end of σ was reached, and it cannot accept any prices in the second
part of σ ◦ σ̂. Hence, (16) also holds in this case. This shows (15).

Now observe that for any non-decreasing σ we have

E[EXPOk(σ ◦ σ̂)] ≥ E[EXPOk(σ̂)] ,

since for every j algorithm EXPO
j
k accepts k prices in σ ◦ σ̂ that are at least mbj ,

but in σ̂ it accepts k times exactly its reservation price mbj . Combined with the
fact that OPT(σ ◦ σ̂) = OPT(σ̂) = kM , this yields

R(σ ◦ σ̂) ≤ R(σ̂) .
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With (15), this implies that σ̂ is a worst-case sequence for (14). Therefore, we
have

CR(EXPOk) = R(σ̂) =
kM

1
ℓ

∑ℓ−1
j=0 kmbj

= ℓ
ϕ (b − 1)

ϕ − 1
= lnϕ

ϕ

ϕ − 1
· (b − 1)

ln b
,

since M = ϕm and bℓ = ϕ. ⊓⊔

For ϕ > 3 and b < 3/2, we have ϕ
ϕ−1

(b−1)
ln b < 2, and hence combining Lemma 8

and 9 we immediately obtain Theorem 3.

3.2 Randomized k-Min-Search

The proof of the lower bound for k-min-search, Theorem 4, uses an analogous
version of Yao’s principle (see for instance Theorem 8.5 in [19]).

Theorem 6 (Yao’s principle for cost minimization problems). For an
online cost minimization problem Π, let the set of possible input sequences S and
the set of deterministic algorithms A be finite, and given by S = {σ1, . . . , σn} and
A = {ALG1, . . . ,ALGm}. Fix any probability distribution y(σ) on S. Let RALG

be any mixed strategy, given by a probability distribution x(a) on A. Then,

CR(RALG) = max
σ∈S

E[RALG(σ)]

OPT(σ)
≥ min

ALG∈A
E

[
ALG

OPT

]

.

We are now ready to prove Theorem 4.

Proof (Theorem 4). We shall consider first the case k = 1. Let S = {σ1, σ2} with

σ1 = m
√

ϕ,M, . . . ,M and σ2 = m
√

ϕ,m,M, . . . ,M ,

and let y(σ) be the uniform distribution on S. For i ∈ {1, 2}, let ALGi be
the reservation price policy with reservation prices p∗1 = m

√
ϕ and p∗2 = m,

respectively. Obviously, the best deterministic algorithm against the randomized
input given by the distribution y(σ) behaves either like ALG1 or ALG2. Since

E

[
ALGi

OPT

]

= (1 +
√

ϕ)/2, i ∈ {1, 2} ,

the desired lower bound follows from the min-cost version of Yao’s principle. For
general k ≥ 1, we repeat the prices m

√
ϕ and m in σ1 and σ2 k times each.

Observe that in that case we can partition the set of all deterministic algorithms
into k+1 equivalence classes, according to the number price quotations accepted
from the first k prices m

√
ϕ, . . . ,m

√
ϕ, as σ1 and σ2 are not distinguishable until

the (k + 1)th price. Suppose ALG accepts j times the price m
√

ϕ. Then we have

E

[
ALG

OPT

]

=
1

2

(
jm

√
ϕ + (k − j)M

km
√

ϕ
+

jm
√

ϕ + (k − j)m

km

)

= (1 +
√

ϕ)/2

for all 0 ≤ j ≤ k, and the lower bound follows again from Yao’s principle. ⊓⊔
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4 Robust Valuation of Lookback Options

In this section, we use the deterministic k-search algorithms from Section 2 to
derive upper bounds for the price of lookback options under the assumption
of bounded stock price paths and non-existence of arbitrage opportunities. We
consider a discrete-time model of trading. For simplicity we assume that the
interest rate is zero. The price of the stock at time t ∈ {0, 1, . . . , T} is given by
St, with S0 being the price when seller and buyer enter the option contract.

Recall that the holder of a lookback call has the right to buy shares from the
option writer for the price Smin = min{St | 0 ≤ t ≤ T}. We shall assume that
the lookback call is on k ≥ 1 units of the underlying stock.

Note that since Smin ≤ ST , the option holder is never worse off executing
the option at the expiry date T (and then immediately selling the shares for ST )
rather than to forgo his option. Hence, a lookback call option can always be
considered as executed at expiry. This is in contrast to a European call option,
where the option holder is not interested in executing his option if the price ST

at expiry is below the pre-specified strike price K.
Neglecting stock price appreciation, upwards and downwards movement of

the stock price is equally likely. Consequently, we will assume a symmetric trad-
ing range [ϕ−1/2S0, ϕ

1/2 S0] with ϕ > 1. We refer to a price path that satisfies
St ∈ [ϕ−1/2S0, ϕ

1/2 S0] for all 1 ≤ t ≤ T as a (S0, ϕ) price path.

4.1 Upper Bounds for the Price of Lookback Options

Theorem 7. Assume (St)0≤t≤T is a (S0, ϕ) stock price path. Let s∗(k, ϕ) be
given by (2), and let

V ∗
Call(S0, ϕ) = S0(s

∗(k, ϕ) − 1)/
√

ϕ . (17)

Let V be the option premium paid at time t = 0 for a lookback call option on k
shares expiring at time T . Suppose we have V > V ∗

Call
(k, S0, ϕ). Then there exists

an arbitrage opportunity for the option writer, i.e., there is a zero-net-investment
strategy which yields a profit for all (S0, ϕ) stock price paths.

Proof. In the following, let Ct denote the money in the option writer’s cash
account at time t. At time t = 0, the option writer receives V from the option
buyer, and we have C0 = V . The option writer then successively buys k shares,
one-by-one, applying RPPmin for k-min-search with reservation prices as given
by (8). Let H be the total sum of money spent for purchasing k units of stock.
By Lemma 3 we have H ≤ ks∗(k, ϕ)Smin. At time T the option holder purchases
k shares from the option writer for kSmin in cash. As noted above, a lookback
call option can always be considered executed at the expiration time T ; if the
option holder does not execute his option, the option writer simply sells the k
shares again on the market for kST ≥ kSmin.

After everything has been settled, we have

CT = V − H + kSmin ≥ V + kSmin(1 − s∗(k, ϕ)) .
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Because of Smin ≥ S0/
√

ϕ and V > V ∗
Call(S0, ϕ), we conclude that CT > 0 for

all possible (S0, ϕ) stock price paths. Hence, this is indeed a zero net investment
profit for the option writer on all (S0, ϕ) stock price paths. ⊓⊔

Under the no-arbitrage assumption, we immediately obtain an upper bound
for the value of a lookback call option.

Corollary 1. Under the no-arbitrage assumption, we have V ≤ V ∗
Call

(k, S0, ϕ),
with V ∗

Call
(k, S0, ϕ) as defined in (17).

Using Lemma 1 and similar no-arbitrage arguments, also an upper bound for
the price of a lookback put option can be established.

Note that it is not possible to derive non-trivial lower bounds for lookback
options in the bounded stock price model, as a (S0, ϕ)-price path may stay at S0

throughout, making the option mature worthless for the holder. To derive lower
bounds, there must be a promised fluctuation of the stock. In the classical Black-
Scholes pricing model, this is given by the volatility of the Brownian motion.

We shall remark that in practice there is certainly no trading range in which
the stock price stays with certainty; what we rather can give are trading ranges
in which the price stays with sufficiently high probability. V ∗

Call is then to be un-
derstood as a bound for the option price up to a certain residual risk. Note that
whereas the Black-Scholes-type price (18), which shall be given in the next sec-
tion, has no such residual risk within the Black-Scholes model, it does certainly
have significant model risk due to the fact that the Black-Scholes assumptions
might turn out to be incorrect in the first place.

4.2 Comparison to Pricing in Black-Scholes Model

Goldman, Sosin and Gatto [20] give closed form solutions for the value of look-
back puts and calls in the Black-Scholes setting. Let σ be the volatility of the
stock price, modeled by a geometric Brownian motion, S(t) = S0 exp(−σ2t/2 +
σB(t)), where B(t) is a standard Brownian motion. Let Φ(x) denote the cumu-
lative distribution function of the standard normal distribution. Then, for zero
interest rate, at time t = 0 the value of a lookback call on one share of stock,
expiring at time T , is given by

V BS
Call(S0, T, σ) = S0

(
2Φ(σ

√
T/2) − 1

)
. (18)

The hedging strategy is a certain roll-over replication strategy of a series of Eu-
ropean call options. Everytime the stock price hits a new all-time low, the hedger
has to “roll-over” her position in the call to one with a new strike. Interestingly,
this kind of behavior to act only when a new all-time low is reached resembles
the behavior of RPPmin for k-min-search.

For a numerical comparison of the bound V ∗
Call(k, S0, ϕ, T ) with the Black-

Scholes-type pricing formula (18), we choose the fluctuation rate ϕ = ϕ(T )
such that the expected trading range

[
E(min0≤t≤T St), E(max0≤t≤T St)

]
of a

geometric Brownian motion starting at S0 with volatility σ is
[
ϕ−1/2S0, ϕ

1/2S0

]
.
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Figure 1 shows the results for σ = 0.2, S0 = 20 and k = 10. As can be seen
from the graph, the bound V ∗

Call is qualitatively and quantitatively similar to
the Black-Scholes-type pricing (18). However, it is important to note that the
two pricing formulas rely on two different models. In the Black-Scholes model,
(18) is the correct price for a lookback option. On the other hand, the key
advantage of our price bound are its weak modeling assumptions on the price
dynamics, and hence the price bound holds even in situations where the Black-
Scholes assumptions might break down. Certainly, both concepts have strengths
and weaknesses, and a good analyst consults, compares and combines both.

0 0.2 0.4 0.6 0.8 1
17

18

19

20

21

22

23

24

Time T in years

S
to

ck
 p

ric
e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Time to expiry T in years

O
pt

io
n 

pr
ic

e

Fig. 1. The left plot shows the expected trading range of a geometric Brownian motion
with volatility σ = 0.2 and S(0) = 20. The right plot shows the price of a lookback call
with maturity T in the Black-Scholes model (solid line) and the bound V ∗

Call (dashed
line), with k = 100 and ϕ(T ) chosen to match the expected trading range.
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