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Abstract. In the standard model of observational learning, n agents
sequentially decide between two alternatives a or b, one of which is ob-
jectively superior. Their choice is based on a stochastic private signal
and the decisions of others. Assuming a rational behavior, it is known
that informational cascades arise, which cause an overwhelming fraction
of the population to make the same choice, either correct or false. As-
suming that each agent is able to observe the actions of all predecessors,
it was shown by Bikhchandani, Hirshleifer, and Welch [1, 2] that, inde-
pendently of the population size, false informational cascades are quite
likely.

In a more realistic setting, agents observe just a subset of their prede-
cessors, modeled by a random network of acquaintanceships. We show
that the probability of false informational cascades depends on the edge
probability p of the underlying network. As in the standard model, the
emergence of false cascades is quite likely if p does not depend on n. In
contrast to that, false cascades are very unlikely if p = p(n) is a sequence
that decreases with n. Provided the decay of p is not too fast, correct
cascades emerge almost surely, benefiting the entire population.

1 Introduction

In recent years, there has been growing interest in modeling and analyzing pro-
cesses of observational learning, first introduced by Banerjee [3] and Bikhchan-
dani, Hirshleifer, and Welch [1,2]. In the model of [1,2], individuals make a
once-in-a-lifetime choice between two alternatives sequentially. Each individual
has access to private information, which is hidden to other individuals, and also
observes the choices made by his predecessors. Since each action taken provides
an information externality, individuals may start to imitate their predecessors
so as to maximize their objective. Although such herding behavior is a locally
optimal strategy for each individual, it might not be beneficial for the population
as a whole. In the models of [3] and [1, 2], imitation may cause an informational
cascade such that all subsequent individuals make the same decision, regardless
of their private information. One of the main results in [3] and [1, 2] states that
the probability of a cascade that leads most members of the population into the
false decision is constant, independently of the population size.

This result seems counterintuitive to our every day experience since at many
occasions taking the choice of others into account is wise and beneficial for the
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entire society. In fact, imitation has been recognized as an important manifes-
tation of intelligence and social learning. For instance, in his popular bestseller
“The Wisdom of Crowds” [4], Surowiecki praises the superior judgment of large
groups of people over an elite few. This became evident, for example, when
Google launched their web search engine, at that time offering a superior ser-
vice quality. Encouraged by their acquaintances, more and more users adopted
Google as their primary index to the web. Moreover, the Google search engine
itself leverages the wisdom of crowds by ranking their search results with the
PageRank algorithm [5].

The reason that herding could be rather harmful in the model studied in [1, 2]
is that each individual has unlimited observational power over the actions taken
by all predecessors. In a more realistic model, information disseminates not per-
fectly so that individuals typically observe merely a small subset of their predeces-
sors. In this paper, we propose a generalization of the sequential learning model
of [1,2]. Suppose the population has size n. For each individual ¢ € {1,...,n},
a set of acquaintances I'(¢) among all predecessors j < i is selected, where each
member of I'(7) is chosen with probability p = p(n), 0 < p < 1, independently
of all other members. Only the actions taken by members of I'(i) are revealed
to the individual 7, all other actions remain unknown to ¢. Thus, the underlying
social network is a random graph according to the model of Erdés and Rényi [6].
Setting p = 1 resembles the model of [1,2].

Extending the result of [1,2], we show that if p is a constant, the probability
that a false informational cascade occurs during the decision process is constant,
i.e., independent of the population size n. On the other hand, if p = p(n) is a
function that decays with n arbitrarily slowly, the probability of a false infor-
mational cascade tends to 0 as n tends to infinity. Informally speaking, almost
all members of fairly large, moderately linked social networks make the correct
choice with probability very close to 1, which is in accordance with our every
day experience.

1.1 Model of Sequential Observational Learning in Networks

We consider the following framework of sequential learning in social networks
that naturally generalizes the setting in [1,2]. There are n individuals (or equiv-
alently, agents or decision-makers in the following), V = {v1,...,v,}, facing a
once-in-a-lifetime decision between two alternatives a and b. Decisions are made
sequentially in the order of the labeling of V. One of the two choices is objectively
superior, but which one that is remains unknown to all individuals throughout.
Let 6 € {a,b} denote that superior choice. The a-priori probabilities of being
the superior choice are

Each agent v; € V makes his choice ch(v;) € {a,b} based on two sources of
information: a private signal s(v;) € {a,b} and public information. The private
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signal s(v;) is only observed by the individual v;. All private signals are iden-
tically and independently distributed, satisfying P [s(v;) = ] = «. That is, « is
the probability that a private signal correctly recommends the superior choice.
We assume that 1/2 < « < 1, excluding the trivial case o = 1.

The actions {ch(v;) | 1 <4 < n} are public information, but an individual v;
can only observe the actions of a subset I; C V;_1 = {vy,...,v;—1} of acquain-
tances. For all agents v;, 2 < ¢ < n, each of the possible acquaintances v; € V;_;
is included with probability 0 < p = p(n) < 1 into I3, independently of all other
elements in V;_1. Equivalently, the underlying social network can be represented
as a labeled, undirected random graph G = G, on the vertex set V, where
each possible edge is included with probability p, independently of all other
edges. Then the set of acquaintances I'; of agent v; is given by I'g(v;) N Vi_1,
where I'¢(v;) denotes the neighborhood of v; in G. It is easily seen that both
representations are equivalent [7,8] and yield a random graph in the classical
model of Erdés and Rényi [6]. We shall assume throughout this paper that the
social network is exogenously determined before all decisions take place and
represented in form of a random graph G = G,, ;.

Various models of social networks were proposed in the literature (see e.g. [9]).
The classical random graph model of Erdés and Rényi is analytically well under-
stood and, despite its idealistic assumptions, powerful enough to explain essential
features of sequential social learning well. Moreover, it naturally generalizes the
model proposed in [1, 2], which is captured in the case p = 1.

1.2 Main Result

All agents employ the following deterministic rule for making decisions, which
is a slight variation of the decision rule in [1,2].

Definition 1 (Decision rule). Suppose individual v; has received the private
signal s(v;), and, among his acquaintances I'(i), m, chose option a and my
chose option b. Then we have

a Z.fma_mb227
ch(v;) =<b ifmy—mg >2

s(v;) otherwise .

One can show that on a complete graph this strategy is locally optimal for
each individual assuming that the actions of acquaintances are given in an ag-
gregated form, that is, agent v; merely observes how many times either of the
options a and b was chosen before (see Lemma 11 in the appendix).

For any two sequences a,, and b,,, n € N, we write a,, < b, if

29

lim — =0 .

Then our result reads as follows.
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Theorem 1. Suppose a social network with n agents V.= {vy,...,v,} is given
as a random graph G = G, , with vertex set V' and edge probability p = p(n).
Assume that private signals are correct with probability 1/2 < a < 1 and each
agent applies the decision rule in Definition 1. Let cq p(n) be a random variable
counting the number of agents that make the correct choice.

(i) If n™! < p < 1, we have
lim Pleap(n) = (1—o(l))n]=1 . (1)

n—oo
(i) If 0 < p < 1 is a constant, then there exists a constant o = p(a,p) > 0
such that
HILII;OP[Ca,p(n) =o(n)] =0 . (2)

In moderately linked social networks as in (i), the entire society benefits from
learning. Note that if agents ignored the actions of others completely, typically
a (1 — a)-fraction of the population would make the false decision. On the other
hand, if each individual has very many acquaintances on average as in (ii),
incorrect informational cascades that lead almost the entire population into the
false decision are quite likely.

In very sparse random networks with p < ¢/n for some constant ¢ > 0, no
significant herding will arise since those networks typically contain yn isolated
vertices for some constant v = (c) > 0 [7, 8]. These agents make their decision
independently of all other agents and, hence, we expect that both groups of
agents, choosing a and b respectively, contain a linear fraction of the population.

The crucial difference between the model of [1,2], which assumes that the
underlying graph of the social network is complete, and our model is that in the
former the probability of a false informational cascade primarily depends on the
decision of very few agents at the beginning of the process. For instance, with
constant probability the first three agents make the false decision, no matter
which decision rule they apply. Since in a complete graph each subsequent agent
observes these actions, locally optimal imitation will trick the entire population
into the false decision. In contrast to that, information accumulates locally in
the beginning if the underlying network is sparse as in (i). During a relatively
long phase of the process, individuals make an independent decision because
none of their acquaintances has decided yet. Hence, after that phase typically a
fraction very close to « of these agents made the correct choice, creating a bias
towards it. In later phases of the process, agents observe this bias among their
acquaintances and, trusting the majority, make the correct decision, thereby
increasing the bias even more. In the end, almost all agents are on the correct
side.

Before presenting the proof of Theorem 1, let us make these ideas more
precise. For any j, 1 < j <mn, let V; = {v1,...,v;} denote the set of the first j
agents. Recall that 6 € {a,b} denotes the objectively superior choice between a
and b. For any set of agents V' C V| let

C(V')={veV :ch(v) =0}
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be the subset of agents in V' who made the correct decision. We denote the cardi-
nality of C(V’) by ¢(V'). Suppose that in the first group of j > 1 agents approx-
imately an a-fraction made the correct decision. The first important observation
is that the subsequent agent v, makes the correct choice with probability at
least a if v;11 obeys the decision rule in Definition 1.

Lemma 1. Suppose the underlying social network is a random graph G, , with
edge probability 0 < p < 1. Let 1/2 < o < 1 be fized. Then there exists € > 0
such that setting @ = (1 — €)a, for all 1 < j <n—1, we have

B [ch(vj41) = 0 | (V) > ] > a
provided agent vjy1 obeys the decision rule in Definition 1.

So basically, following the majority and using the private signal only to break
ties does not decrease the chances of any agent even if his acquaintances are
randomly selected, provided that there is a bias among all predecessors towards
the right direction. This enables us to show that, throughout the first stage,
a bias of @ > 1/2 remains stable in the group of decided agents. Once this
group has reached a critical mass, new agents adopt the correct choice with very
high probability since the bias among their acquaintances is so evident. More
specifically, we can show the following “herding” lemma .

Lemma 2. Suppose the underlying social network is a random graph Gy, , with
edge probability 1 < p < 1. Let 1/2 < & < 1 be fized. Then there exists a
constant § > 0 and jo > 1 satisfying jo = O(p_l) such that for all jo < j < n-—1,
we have

P [ch(vj11) =0 c(V;) > aj] > 1— e oI

provided agent vj1 obeys the decision rule in Definition 1.

Thus, most agents opt for 6 with probability very close to 1 in the second
stage. What makes the crucial difference between parts (¢) and (i¢) of Theorem 1
is that if p is a constant, the assumption ¢(V;) > &j in Lemmas 1 and 2 is met
in the process only with probability bounded away from 1. Then it is quite likely
that agents experience a bias towards the false direction among their acquain-
tances, and the same herding behavior as before evokes a false informational
cascade.

1.3 Related Results

As already mentioned, Bikhchandani, Hirshleifer, and Welch [1, 2] consider the
case when the social network is a complete graph. Here informational cascades
arise quickly, and it is quite likely that they are false. The authors of [1,2]
consider a decision rule that is slightly different from the one in Definition 1.
As shown in Sect. A.1 of the appendix, although both rules are locally optimal,
false informational cascades are more likely with the rule in [1,2].
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Models of observational learning processes were investigated in several pa-
pers. Banerjee [3] analyzes a model of sequential decision making that provokes
herding behavior; as before, each decision-maker can observe the actions taken
by all of his predecessors. In the model of Celen and Kariv [10], decision-makers
can only observe the action of their immediate predecessor. Banerjee and Fu-
denberg [11] consider the model in which each agent can observe the actions of a
sample of his predecessors. This is comparable to our model with an underlying
random network G, ,. However, their model of making decisions is different; at
each point in time, a proportion of the entire population leaves and is replaced by
newcomers, who simultaneously make their decision. Similarly to our result, the
authors of [11] show that, under certain assumptions, informational cascade are
correct in the long run. In the learning process studied by Gale and Kariv [12],
agents make decisions simultaneously rather than in a sequential order, but they
may repeatedly revise their choice. Watts [13] studies random social networks, in
which agents can either adopt or not. Starting with no adopters, in each round
all agents update their state according to some rule depending on the state of
their neighbors. In this model, the emergence of global informational cascades
also depends on the density of the underlying random network.

1.4 Organization of the Paper

The paper is organized as follows. In Sect. 2 we present the proof of Theorem 1(i).
An outline of this proof is contained in Sect. 2.1, where we also state a series of
technical lemmas, which are proved in Sect. 2.2. The proof of Theorem 1(ii) is
deferred to the appendix (see Sect. C). We conclude with experimental results
in Sect. 3.

2 Proof of Theorem 1(i)

Suppose n~! <« p <« 1 is given as in the theorem, and consider a random
graph G = G, , on the vertex set V with edge set E. For any set V/ C V,
let E(V') denote the set of edges induced by V' in G. Recall that C (V') denotes
the subset of agents in ¥V’ who made the correct decision. Let C(V') = V/\C(V"')
be its complement and set c¢(V’) = |C(V')| and &(V') = |C(V")|. The binomial
distribution with mean np is denoted by Bin(n, p).

2.1 Outline of the Proof

The proof of of Theorem 1(i) is based on a series of auxiliary lemmas that we
state here. The proofs of these lemmas are deferred to Sect. 2.2.
We subdivide the process of decision making into three phases as follows:

Phase I: Agents V; = {v1,..., v, } with kg = p~tw™ /2
Phase II: Agents Vi; = {vpgs1,-- .,k } with ky = p~lw!/2.
Phase III: Agents Virr = {vg, 41, -5 Un}
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In Phase I, the phase of the early adopters, most decision-makers have no more
than one neighbor who has already decided. Such an agent always follows the
private signal according to the decision rule in Definition 1, regardless of all
others. Therefore, almost all agents make their decisions based solely on their
private signal, which yields approximately an a-fraction of individuals who opted
for 6. More specifically, we can establish the following lemma.

Lemma 3. Let w = w(n) be a sequence satisfying 1 K w < n. Let 1/2 < a < 1,
0<p<l/wandky= p w2 be given. Then we have

P [c(vko) > (1 - ko‘”") ako} —1-0(1)

Note that if 0 < p < 1 is a constant independent of n, Phase I breaks down;
there is no kg > 1 such that the number of correctly decided agents in Vj, is
roughly ko with probability 1 — o(1). That is exactly what makes the situation
in part (ii) of Theorem 1 different.

In Phase II, more and more agents face decisions of their acquaintances.
As stated in Lemma 1, everybody makes a correct choice with probability at
least o assuming that roughly an a-fraction of the preceding agents took the
right action. The following lemma asserts that approximately this fraction of
correct decisions is maintained throughout the second phase.

Lemma 4. Let w = w(n) be a sequence satisfyingl < w < n. Let 1/2 < a < 1,
0<p<1l/w andky = p w2 and ky = p~'w'/? be given. Then we have
P [c(v,ﬁ) > (1 - kgl/ls) ak ‘ (Viy) > (1 - k(;l/9) ako} —1-o(1)

At the beginning of Phase III, every agent v; has E[|I;|] > pky > 1 decided
neighbors on average. With high probability v; disregards the private signal and
follows the majority vote among its acquaintances, thereby making the correct
choice.

Lemma 5. Letp >0, @ > 1/2 and k > 1 be given. Then, for all i > k, we have

a—1
3

i [c(n Vi) —annv > 22 ) (Vi) > dk} > 12 exp (—pkC)

where C' = (2a — 1)2/(18a). Furthermore, if p > w/n and k > k; = p~'w!/?
hold for some sequence w = w(n) with 1 € w K n, then for all i > k we have

(3)

Using this strong probability bound, we can prove that with high probability
actually almost all agents make the correct choice in Phase III.

Pl i 2 2 ] 210

Lemma 6. Let w = w(n) be a sequence satisfying 1 < w < n. Let 1/2 < a < 1,
wn<p<ljw, kg = p~lw 2 and ky = p~*w/? be given. Then we have

P {C(Vn) > (1 - w71/20) n

(Vi) = (1 - k:0_1/18> akl] —1-o0(1)
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Combining Lemmas 3, 4 and 6, Theorem 1 follows immediately.

Proof (of Theorem 1 (i)). We consider the following three events
B (Vi) > (1 - kg”g) ako |
Ey: (Vi) > (1 — k_1/18) aky
Es: (V) > (1 - w_l/zo) n

By Lemmas 3, 4 and 6, we have

P[Fs] <P[Es | Es] +P[Es | Ba] +P[Ei] = o(1) .

2.2 Proofs of Auxiliary Lemmas

Here we present the proofs of Lemmas 3, 4, 5, and 6 that were stated in the
previous section. We will frequently make use of the following Chernoff tail
bounds. The reader is referred to standard textbooks, e.g. [7, 8], for proofs.

Lemma 7. Let Xq,...,X, be independent Bernoulli trials with P[X; = 1] =
Let X =" X; and p =E[X] =", pi. Then we have
(a) PIX > (1+08)u] <e /3 forall 0<6<1,
(b) P[X < (1-0)u | <e P2 forall 0<5<1,
(c)IP’[X>t]<e forall t>7u and
2

(d) PIX>pu+t]<e R0 forall t>0 .

We first give the proof of Lemma 3, which makes an assertion on the number
of correct decision-makers in Phase I.

Proof (of Lemma 3). For all 2 <i < ko, we have

B[l > 2 = ( )pJ (ip)’ (4)
J =2
o k2p2
2N (K 0 )
kop ; o) < T

Let A ={v; : |[I}] <1, 2 < i < ko}, and B = Vj, \ A its complement.
Note that all individuals in the set A make their decision solely based on their
private signals. For individuals in B we don’t know whether they have observed
an imbalance |A| > 2 in the actions of their neighbors and chosen to follow the
majority, disregarding their private signals. But because of (4) and the definition
of kg we have

kop

_ .32
- kop—kop (140(1)) .

E[1B]] = ZP [Tia] > 2] <
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Let € denote the event that |B| < ko*p?w?/® = kow /3. As w — oo we can
apply Lemma 7 (c) and deduce that

P[E] =P [|B] > ko'p2u®?] e h'™ — b — 1) (5
by definition of kg. Since by the decision rule in Definition 1 all individuals
v; € Ay, follow their private signals, we have E [¢(A)] = (1 — a) |A|. Clearly, we
have |A| < ko, and conditional on &, we have |A| > ko (1 — w™1/?). Therefore,

(1—a) ko (1 - w_1/3) <E [a(A) ) 5} <(1-a)ko .
Using ko > w'/2, Chernoff bounds imply

P [C(A) < (1 - kgl/g) ako \ 5] =P [E(A) > |A| - (1 - ko_l/g) ako \ 5]

Oékil/g
<P|&A) > <1+ © >E[c(A)|E] 5]
—ME[E(A)M] —9(k7/9)
<e 3(1-)? =e 0 :O(l) .

Thus, we have
P [C(Vko) > (1 - kgl/g) ako ‘ 5} >P [C(A) > (1 - k51/9) ako ‘ 5} —1-0(1) .
Since

P [c(v,m) > (1 - kgl/g) ako} >P [C(Vko) > (1 - kgl/g) ako ] 5} PlE] ,

we conclude with (5) P [C(Vko) > (1 - k51/9> ako} =1-o0(1) . O

Before we proceed with the proof of Lemma 4, we need to state and prove a
slightly stronger version of Lemma 1 in Sect. 1.2.

Lemma 8. For every 1/2 < o < 1 there exists an € > 0 such that if we have
c(Vk) > (1 —e)ak for k> 1, then for all i > k with I; C Vj, we have

Plch(v;) =60] > « .
Proof (of Lemma 8). Let ¢(V,) = ak for some constant & > 0. Furthermore, let
A = C(Vk ﬂFZ) — E(Vkﬂﬂ)

be the difference in the number of neighbors of agent i in C'(V;) and in C(V}),
and let p; = P[A = j] denote the probability that this difference is exactly j.
Let ¢, = min{ak, (1 — a)k + j} and ¢35 = (1 — @)k < £;. Then for all j > 2, we

have vfgl ak\ (L= a)k\ o5 i k(26—
p]Z<s)< >p (1-p)

s i
s=j J
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and
fg — —
(1-ak ak 25— k—(25—j
= s 1— s—7J) )
P—j SE_j( . s )P (1-p)

Forr>s>1,let rf =r(r—1)...(r — s+ 1) be the falling factorial. For all
j>1and j <s < /¥y, we have

(ak) ((1 - a)k> (ak)2((1 — @)k)>=

s s—7 sl(s —4)!
(@)L -a)k)e p ak—s+j—t
B sl(s — j)! g(l—@)k—s+j—t

() ()

2
8] .
ij( ) D—j Vi>2,

Therefore we have

and

1—a -
& \2
_ ( ) (1-Pl1<a<1-PA=2)
1—a
Thus, we have
1
P[AzQ]ziﬂ(lfP[flgAgl]) : (6)
o
Let € < 2(0‘_1%:—7 1(171—1 A straightforward calculation shows that
b sa4 vas(i-o (7)
— > a>(1-¢ea .
1+ (552)°

Because of the decision rule given in Definition 1, using (6) and (7) we have
Plch(v;) = 0] =aP[-1 < A<L1]+P[A>2] >«
for all @ > (1 —¢)a. 0
Note that Lemma 1 follows immediately from Lemma 8. Using Lemma 8, we

now present the proof of Lemma 4, which asserts that roughly an a-fraction of
correct decision-makers is maintained throughout Phase II.
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Proof (of Lemma 4). We consider groups W; of m = p~/3w=1/4 > /12 in-
dividuals, resulting in £ = (k; — ko)/m < ki/m < kyp'/3w'/* groups between
individuals kg and ki. Let &; be the event that there is at most one individual
in W; that has a neighbor in W;, i.e. |[E(W;)| < 1.Let £ =& A---A &. Since
m?2p = o(1), for n sufficiently large, we have

(72n) m (ZL) (o]
P& ] < <(2.)>pj <> mPp <m'p? Yy m¥p

j=2 J j=2 j=0
m4p2
— 7 < om*p? 8
S1-mzp =P (8)
and B B
P[E]<t-P[& ] <2m*p? < 2phiw ™/t =207 . (9)
We have

P [C(Vkl) < (1 - ko‘l/”) akl} <P [c(vkl) < (1 - ko‘l/ls) ak ‘ 5} +P[E] ,

and defining A; as the event that ¢(W;) > « (1 — ko’l/ls) m,

P [c(v,ﬁ) < (1 - ko‘l/ls) ak ‘ 5] <

B le(Vis) < (1-85"") oy [En A n - n Al +
%P[Xﬂg/\Al/\...AAj]

J=0

Since €A Ay A -+ A Ay implies ¢(Vy,) > (1 — kal/lg) aky, we conclude

-1
Ple(Vi) < (1= k) ok | < STP[A[EAA A A]+P[E] . (10)

Jj=0

Let & = (1 - kal/lg) a. The event €A A; A --- AN Aj—1 means that before the

individuals in group W; have to make a decision, we have

(Vg (j—1ym) = alko + (j — 1)m) ,

and there is at most one individual w; € W; with a neighbor in W; that made
his decision before wj. Letiwj = W; \ w; and m = m — 1. Lemma 8 asserts,
that there is an € > 0 and k£ > 1 (which both depend only on «), such that for
all k > k we have P [ch(v) = 0] > « for all v € W, if 1— ko /'® < e. But since
ko > w, for n sufficiently large we certainly have kg > k and @ > (1 —¢)a. Hence,
we have E [C(WJ)} > ari. Chernoff bounds imply

/9 —1/9

P {C(Wj) < (1 —2 ko‘l/ls) am] < o—2aamkg < (—amk;
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Since for n sufficiently large we have
_ —1/18
P[A;[EAALN--AA; ] :P[C(Wj) < (14% )am]

<P [C(Wj) < (1 - ng”lg) am} :

we also have
1/9 ap~2/9uT/36

PA; [ENAL A ANAj_1] <e @™o T = e

Furthermore, since £ < p~2/3w3/4, we have

4 2
ZP[ZJ‘|G/\A1/\"-/\AJ‘,1] Sfe_ap_gw

j=1

&~

|

Q
—

—
~—
—

—

—
~—

Thus, because of (9), (10) and (11) we can conclude

Ple(Vi,) > (1- kgf*s) aki| =1-0(1) .
O

We continue with the proof of Lemma 5, which is a slightly stronger version
than Lemma 2 in Sect. 1.2.

Proof (of Lemma 5). Let Ny = C(I;NVy) and N = C(I;N V) be the neighbors
of 7 in Vj, who made the correct (respectively false) decision, and ny = |Ngy|. Let
ny = |Np|. We have ng ~ Bin(ce(Vy), p) and ny, ~ Bin(k—c(Vk),p). Let gy = pak
and pp = p(1 — &) k. Then we have E [ng] > pg and E [np] < . Define

1w 2a-1

(5:——7: . ].2
3 3u, 3a (12)

‘We have

Plng —np < opgl =Png — (1 = 6)pg <np — (1 —26)p,]
<P lng = (1= 8)pg <y — (1= 20)p5 | ny > (1= 0)psy| +

P[ng <(1- 5)/@} )
and thus
Plng — mp < 8p15) < Pl > (1— 26)p15] + Py < (1= )] . (13)
The Chernoff bound in Lemma 7 (b) implies that

Plng < (1—8)py] <Png < (1 —0)E[ng]] < e Bal0™/2 < gmmad™/2 - (14)
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and since 1 — 26 — uy,/pg = 6 by (12), we have

Plne > (1= 26)pg] =P ne > E[ne] 4+ (1 =20 — E[ng]/ 1) p1]
<Pl > Ene] + (1 =26 — i/ 11g) pg]
=Pny > E[np) + gl -

Thus, using the Chernoff bound in Lemma 7 (d), we obtain

5 04 Oy
Bl > (1 =20)ug] < exp | =55, 75y | = P\~ 500+ oua/3)

Because of (12) we have py, + dpy/3 < pg, and thus

Plny > (1= 20)p,] < e #e% /2 (15)
Because of (13) - (15) and dpgy = (2& — 1)pk/3, we conclude

2a0 -1

P {|C(FiﬂVk)| (V)| < (20‘18;1)2) ,

pk} <2 exp (—pk

and since pk > w'/?, for n sufficiently large we have

1/3

i [|C(F,; NV — [ N V)| > wl/ﬂ >1 e
O

Note that Lemma 2 is a straightforward corollary of Lemma 5; we omit the
proof due to space restrictions. It remains to prove Lemma 6, which relies on
the following lemma.

Lemma 9. Let w = w(n) be a sequence satisfying 1 < w < n. Let % <a<l,
w/nm<p<1l/wand k >k = p~tw!/2. Suppose we have

(Vi) > ak . (16)
Then we have

P [c(Vay, \ Vi) = (1 _ w—l/lg) k:} >1—e .

The proof of Lemma 9 is deferred to Sect. B in the appendix due to space
restrictions. Now we are ready to prove Lemma 6.

Proof (of Lemma 6). We consider subphases of increasing length. More precisely,
the first subphase lasts to individual 2k;. The second subphase then lasts until
individual 4k;. Thus, in general subphase j lasts from individual k; 27~1 until
k1 27. We will have at most log(n — k1) < logn such subphases.
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Inductively, for n sufficiently large we can employ Lemma 9 for each subphase,
as assumption (16) iteratively holds. We obtain

logn logn
(Vo \ Vi,) _ A _ i
o N A I et VA ) § e~Pk127 _ —pk1 E e~ Pk1(2' 1)
n— ki i j=0

e . e~ Pk1
< e Pk E e Pk — =o(1)
- 1—e Pk
=0

Since k1 < nw™1/2, note that ¢(V,, \ Vi,) > (n — k1) (1 — w™'/19) implies
(Vo) = (1= ky/n)(1 - w_l/lg)n > (1- w_l/QO)n
for n sufficiently large. Thus, we conclude

P [C(Vn) > (1- w_l/zo)n} =1-o0(1)

3 Numerical Experiments

The statements in Theorem 1 are asymptotic, asserting the emergence of in-
formational cascades in the limit. As our numerical experiments show, these
phenomena can be observed even with moderately small populations.

We conducted experiments with varying population size n and edge proba-
bility p = p(n). For each value of n and p, we sampled N = 2000 instances of
random graphs G = G,, , and of private signals s(v;), v; € V(G). The sequential
decision process was evaluated on each of those instances following the decision
rule in Definition 1. We identified an informational cascade in such an experi-
ment if at least 95% of all agents opted for the same choice. We computed the
relative frequency of informational cascades among the N samples for each value
of n and p.

We ran the simulation for o = 0.75, n € {100 -4 : 1 < ¢ < 20}, and three
distinct sequences p. The results are plotted in Fig. 1. The solid and the dotted
line represent the relative frequencies of correct and false cascades, respectively,
for constant p = 0.5. In accordance with Theorem 1(ii), both events occur with
constant frequency independent of the population size. The dashed and the dash-
dotted line represent the relative frequencies of correct cascades for p = 1/logn
and p = n~'/2, respectively. Confirming Theorem 1(i) those plots approach 1
as m grows.
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Fig. 1. Simulation results for & = 0.75. The plot shows the relative frequencies of
correct cascades for different values of the edge probability p as a function of n: p = 0.5
(solid line), p = 1/logn (dashed line), and p = n~'/? (dash-dotted line). The dotted
line represents the relative frequency of incorrect cascades for p = 0.5.
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A A Few Remarks on Decision Rules

A.1 The Decision rule of Bikhchandani, Hirshleifer, and Welch

Bikhchandani, Hirshleifer, and Welch [1, 2] use a slightly different version of the
individuals’ local decision rule.

Definition 2 (Local decision rule in [1,2]). Suppose individual v; has re-
ceived the private signal s(v;), and, among his acquaintances I'(i), m, chose
option a and my chose option b. Let z be drawn uniformly at random from
{a,b}. Then

a ifmg—mp>2 or (meg—mp=1)A(s(v;) =a) ,
b ifmp—mg>2 or (my—mg=1)A(s(v;) =0) ,
ch(v;) = ¢ 2 if (my —mg =1) A (s(v;) = a)

or (mg —mp =1) A (s(v;) =) ,
s(vi) if mp—mg=0 .
As the following lemma shows, this decision rule yields inferior global behav-

ior on the complete network G = K,, compared to the decision rule given in
Definition 1.

Lemma 10. Suppose the network of acquaintanceships is G = K,,. Then the
probabilities of ever entering a correct cascade are given by
a? a(l+a)
S S d A Sl 7
1-2a+222 " T o0 —ata?)
if all individuals employ the decision rule in Definition 1 and Definition 2, re-
spectively. For all 1/2 < a < 1, we have fo > go.

fo

Proof. We consider a Markov chain where the state variable A is the difference
between correct and incorrect decision-makers. The decision rules in Definitions
1 and 2 yield transition probabilities as given in Fig. 2.

The probability of entering a correct informational cascade is the probability
of being absorbed in state A > 2 when starting in state A = 0. Under the decision
rule in Definition 1, for —1 <¢ <1 let f; be the probability of eventually being
absorbed in state A > 2 when starting in state A = 7. Analogously, let g; be the
corresponding probabilities under the decision rule in Definition 2. We obtain
the systems of linear equations

hi=a+(0-a)fo, fo=afi+(1—-a)f-1, fa=afy,
and
gi=01+a)2+(1-)g/2, go=agi+(1—-a)g—1, g-1=ag)/2,
which yield
a? a(l +a
“T-2at2a2 ™ 90:2(1(_;312) 7
and it is straightforward to check that fo > go for all 1/2 < a < 1. a

fo
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Fig. 2. Markov chains for the difference A of correct and incorrect decision-makers
under the decision rules in Definition 1 (upper part) and in Definition 2 (lower part).

A.2 The Decision Rule in Definition 1

As one can show, the decision rule in Definition 1 is locally optimal under the
following assumptions.

Lemma 11. Let the social network be given as the complete graph on n wver-
tices. Suppose that previous actions are observable in an aggregated form, and
all individuals behave Bayes rational. Then by acting according to the rule in
Definition 1 each agent mazimizes the a-posteriori probability of making the cor-
rect decision.

Proof. We consider a Markov chain with state variable
A= ‘{v | ch(v) =6,v € V]}‘ - ‘{v | ch(v) #6,v € V]}‘ , (17)
the difference after j individuals between correct and incorrect decision-makers,

assuming that all individuals follow the decision rule in Definition 1. From the
decision rule, for all j > 0 we have the transition probabilities

PlAji=4;+1]4;22) =P[a =4, -1]4;< -2 =1, (1)
and

P[Aj+1=Aj+1‘|Aj|S1}=a , (19)

P[Aj+1=Aj—1‘|Aj|g1}:1—a. (20)

For all £k > 1 and —k < i < k, define

fik = P[Ak = z} .
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The probabilities f; ; will be useful later to prove the local optimality of the
decision rule. From the transition probabilities (18)-(20), we will first compute
fi,; explicitly. Since the first two individuals always decide independently, we
have

fit=a, fi1=1-a, fop =0 fop=2a(l—a) and fo_» = (1—a)? . (21)

In order to have Agk1o = 0, we must have Ay, = 0 and that the actions of the
two individuals in Vj19 \ V; are a and b in any order. Thus, we have

fory2,0 = 20(1 — @) foro »
and because of f 9 = 2a(1 — «) we conclude
foro = 2% (1 =)t . (22)

By similar inductive reasoning with (21) as the base case and using (18)-(20) for
the inductive step, we obtain

for—11 =2 tak (1 — )1 | fopg o =2 1aP (1 — )b
f2k,2 — Qkflakhkl(l _ a)kfl ) f2k,—2 — 2k71ak71(1 _ a)k+1 .

Therefore, we have

for—1,1
for—1,1 + for—1,—1

—a Vk>1, (23)

and )
for2 a

: = Vk>1. 24

foro+ fok,—2  a?+(1—a)? - (24)

Because of (18), we have for j > 2 and 3<i<j+1

fit1 _ Jii-1 (25)
fivri+ fivr—i  fiioi+ fi—@-1)

and thus, inductively by (24) and (25), for all j > 2 and 2 <i < j we have

(26)

fii+fi—i |0 otherwise .

i _{QHO;_Q) if j=i mod?2,
We will now prove that the decision rule in Definition 1 yields the locally optimal
decision for each individual v;, 1 < j < n. For vy, having no observations, the
optimal decision is to follow his private signal, since « > 1/2. Suppose now
that the individual v;41 has to make his decision, observing m, individuals that
made the choice a and my that made the choice b. By the induction hypothesis,
we can assume that all his j predecessors followed the rule in Definition 1. We
distinguish the cases j even and j odd.
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j even: Note that |m, —my| is always even. If m, = my, then v;41 cannot learn
anything about the correct decision by the observation of his predecessors.
Since his signal s(v;41) is correct with o > 1/2, his optimal choice is s(v;41)
in that case. On the other hand, if |m, — my| > 2, we have

PlA; = 2] _ fi2i

P[O:a|ma—mb:2i]:ﬂp

and also

. P[A; = 2i] fi2i
PlO=b|my,—mg=2i| = — = = L .
: [ me ] PlA; =2+ P[A; = =2i]  fio+ fi—2
Because of (26), decision rule in Definition 1 gives individual v;41 a proba-
bility of making the correct choice of

o

Plch(vj+1) =0] = r(1—ap > for all % <a<l. (27)
Since this yields a confidence strictly larger than the confidence « of his
private signal, the decision rule in Definition 1 is indeed locally optimal.

j odd: |m, — my| is always odd, and m, = my can never occur. By analogous
reasoning as in the case of j even, from (23) and (26) we obtain that the
decision rule in Definition 1 is also locally optimal in the case of j odd, which
completes the proof of the inductive step.

O

Remark 1. The alternative decision rule in Definition 2 is a locally optimal
strategy for the individuals as well. The only difference between Definition 1
and Definition 2 is the coin flipping if an individual v; observes a thin major-
ity |mq, — mp| = 1 in conjunction with s(v;) contradicting this majority vote.
From (23) we see that such a thin majority vote has the same significance «
to be correct, exactly the same as v;’s private signal. If the majority vote and
s(v;) do not coincide, both choices a and b have therefore the same a-posteriori
probability to be correct. Thus, flipping a coin is a locally optimal decision, as
well as following the private signal as suggested by the rule in Definition 1. The
reason that Definition 1 yields better global behavior on G = K,, (as shown in
Lemma 10) is that if individuals follow their private signals when |m, —m;| =1
instead of flipping a coin, a greater information externality is provided, benefiting
subsequent agents.

B Proof of Lemma 9

Let m = p ! > wand ¢ = k/m = kp > w2 Forall i =0,...,0—1, let
Wi ={v; | k+iw < j < k+ (i+ 1)m}. That is, we consider ¢ groups until 2k
agents have decided. Let A; be the indicator variable defined by

g - 1 if (W) < (1—w V%) m,
"o otherwise .
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Let C; be the event that 22:1 A; < lw~ 14 We will first show that

3

PlA=1]C 4] <2e" . (28)

To prove (28), let B; = {w € W; : [I'z(w) N W;| > w*?} and let & be the event
that |B;| < m®°. Since &; implies |E(W;)| > $|B;|w?® > m®/°w?/9 we have

P[&] <P ||[EW)| > %ms/%?/*)

and clearly E[E(W;)] = pm(m — 1)/2 = (p~! — 1)/2. For n sufficiently large,
we have mSw$ /2 > TE [E(W;)], and hence the Chernoff bound in Lemma 7 (c)
yields

P [El] < eims/9w2/9/2 < efw10/9/2 ' (29)
Note that C;_1 (i.e. Z;;ll Aj < w~ /4 implies that for n sufficiently large there
exists 1/2 < & < @ such that ¢(Vii(i—1)m) > & (k + (i — 1)m). That is, before
the first individual of group W; decides, we have at least a fraction & of correct
decision-makers. By definition of B;, an agent v € W; \ B; has at most w2/9
neighbors within W;, and because of (3) in the statement of Lemma 5,

P [ch(v) =0 |Cioq] > 1— e Voe W;\B; .
Let o
p=E W\ B) [&nCia] = (1= (1=m ) m .

Then, for n sufficiently large, we have y > m/2 > w/2. Lemma 7 (b) implies
P [C(Wi \ Bi) < (1 . 2w*1/3) " ‘ & A Ci_l} <2 < gt

For n sufficiently large, we have (1 — w‘l/ls) m < (1 — 2w‘1/3) 1. Together with

c(Wi) > ¢(W; \ B;) and 2w~%/3 > w'/3 we therefore have

1/3

P |:C(Wi) < (1 — w_l/ls) m ’ Ei N Ci_l} <e™™

Thus, using (29), we obtain

1/3

P[4 =1|Ci] < e’ 4P [E] <279,

which completes the proof of (28).
Suppose Z§:1 Aj > lw=1/*. Consider the first fw=/* groups W; for which

A; = 1. For each of them, we clearly have Z;;ll Aj < Lw™* and hence (28)
holds for each of those groups. Therefore, for n sufficiently large

14 / s fwo—1/4
P ;Aj > (w4 < (m—w) (2"

w71/4 w
< (e wl/4)Z (2 e_‘“l/s)z

wal/ll
- (2 el+(1ogw)/4w1/3) ot ohr

—1/4



Observational Learning in Random Networks 21
Since Zle A < Lw~Y* implies

Aok \ ) 2 (1= w™/8) (1~ )k 2 (1o 9)

we have
P {c(vgk \ Vi) > (1 w*l/lg)k} >1 ek

This concludes the proof of Lemma 9. O

C Proof of Theorem 1(ii)

First, we need to prove the following technical lemma, which is very similar to
Lemma 5.

Lemma 12. Let 0 < p <1 and 0 < 6 < p/(3 4 2p) be fized. Then there exists
a constant jo = jo(p,d) > 1 such that, for all jo < j<n—1 and all i > j, we
have

P[C(FmVjHéj—E(FmVj) > 2

o(V;) < 8] < 6/2 .

Proof. Note that by symmetry Lemma 5 can also be stated as a lower bound for
the probability of an imbalance towards the false decision among the neighbors
of agent v;. Because of ¢(V;) > aj with @ = 1—¢ > 1/2, this yields for all ¢ > j,

2a -1
3

P {E(Fz— NVj) —c(l3NV;) > pJ \ o(V;) < 53} >1-2exp(=Cpj) ,
where C' = (2a — 1)?/(18a). Note that § < p/(3 + 2p) implies p > 35/(1 — 24),
and hence
2a—1 . 1-—-2)
3 T3
Since p and § are constants, there exists a constant jo > 1 such that we have
2exp (—Cpj) < 6/2 for all j > jo. Thus, we have

pj > 05 .

P[c(rmvj)mj—a(rmvj) > 9 ‘ c(Vy) gaj}
:1-1@[5(nmv3)—cmmm>5j—2‘c(vj)gaj}
glfIP’[E(F,;ﬂVj)fC(EﬁVj)Z(sj
<2exp(—Cpj) <0/2 .

(V) < 3]

This completes the proof of Lemma 12. a
Now, we can show Part (ii) of Theorem 1.

Proof (of (i) in Theorem 1). Suppose p is a constant. We shall show that there
exist positive constants v and g such that

P [C(Vn) < ~v(log n)2] >0 .
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Applying Lemma 12 with p and § = p/(3 + 2p) yields an integer jo, indepen-
dent of n. Let

52
E= ——
6(1+9)
and choose k > jo such that
ek <1/2 .

For n sufficiently large, we can subdivide the set of agents into classes of in-
creasing size as follows. Let Wy = {1,...,k}. For any 1 < ¢ < (logn)/2,
let Wi = {(1+6)"""k+1,...,(1+6)’k}. For any fixed i > 1 and U; = J;_, W},
we claim that

P [c(U;) > 6|Ui| | e(Uiz1) < 8|Us4|] < e =Pl . (30)

In order to prove (30), we need to show that typically at most §|W;| agents in W;
make the correct choice. Recall that 6 denotes the superior choice, and let 6 be
the inferior alternative. Unfortunately, we expect many edges between the agents
in W; causing dependencies. We introduce the following random variables so as
to overcome this issue. For any agent w; € W;, let mg(w;) be the random variable
counting how many acquaintances of w; in U;_; opted for 6 plus the number of
agents in W, i.e.,

mg(wl) = c(F(wi) N Ui_1) + ‘Wl| = c(F(wl) n Ui—l) + 5|Ui_1| .

Furthermgre, let mg(w;) be the number of w;’s acquaintances in U;_1 who de-
cided for 6, i.e.,
mg(wi) = E(F(wl) N Ui,1> .

Define the following random variable

0 if mg(w;) — mg(w;) > 2,
ch(w;) =<0 if mg(w;) —me(w;) > 2,
s(v;) otherwise .

Let X (w;) = 1[ch(w;) = 6] be an indicator random variable. Note that X (w;)
and X (u;) are independent for all u; # w; € W;. Moreover, we have

X(Wi)= > X(wi) > (W)
w; EW;

since ch(w;) = 6 implies ch(w;) = @ for all w; € W;. Then, owing to Lemma 12,
we have _
P [ch(wi) =0 c(U; ) < 5|UH\] <5/2 .

Hence, we conclude that

E[X(W;) | e(Uim1) < 0|Ui—1]] < (8/2)|Wi] .
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It follows from Chernoff bounds (see Lemma 7 (a)) that
P [c(W;) > 6|Wil | c(Ui—1) < 8|Us—1]]

<P[X(W;) > §|Wil | e(Uim1) < 8|Us_4|] < e ?Wil/6
Therefore, with probability

1 — e SIWil/6 _ | _ o= (6/6)(1=(1+8)"")|Us| _ | _ o—¢lUil
we have
c(Us) = c(Ui—1) + c(Wi) < 6|Ui—1| + 6|Wi| = 6|Ui|

(

where e = (6/3) (1 — (1+6)7') = 62/3(1 +6) > 0, and (30) is proved.
Applying (30) 1nduct1vely, yields that, for any r > 1, we have

P[<)>MUHcm)s&%u

< Ze*slU il Z —e(1+9)'k < i:efs(lJrié)k

i=1 i=1
r—1 r—1
— Z e—s(1+(i+1)6)k _ e—s(l+6)k Ze—szﬁk
=0 =0
efs(l+6)k:
< 1 — e—€0k <1

by the choice of k. Since k is fixed, we have ¢(Up) < |Uy| with positive proba-
bility. Hence, there exists a constant ¢ > 0 such that we have

P [c(Ur) < 0|UL|] = P [e(Ur) < 6|U;| | e(Uo) < 6|Uol] - Ple(Uo) < 6|Uol] > &

for all r > 1. In particular, there exists a constant & = @(¢), 1/2 < & < 1, such
that, setting £ = [(logn)?|, we have

Ple(Vy) > al] >3 .

By symmetry we can apply Lemma 2 with parameters p and @ and obtain
constants 7 < 0 and j; < jo, such that, for all j, j; < j < n, we have

P [ch(vj41) =0 | &(V;) > aj] > 1—e ™%
For n sufficiently large, we have ¢ > j; and, therefore,

Ple(Va) < (1 —a)l] > P [ce(Va) < (1 —a)l | &(Vy) > adl] - P[e(Vy) > o]

(ﬁp ch(vj1) =0 | &V; Z@JO.@
> <nH1 (l—e_”’j)> 0

L

no_ " ~_ -
2 (1 _e—-rp(logn)2> QZ (1_ ) QZ 9/4: 0

for 9 = p/4. This completes the proof of the theorem. O



